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Abstract

How efficiently do markets reallocate capital in booms and busts? Using a novel
dataset of offshore drilling contracts I examine the role of matching in shaping industry
reallocation. Oil companies search and match with capital (rigs) in a decentralized
market. I find oil and gas booms increase the option value of searching which leads
agents to avoid bad matches, reducing mismatch through a sorting effect. I provide
an identification strategy to disentangle unobserved demand changes from the sorting
effect. Estimating a model, I find substantial benefits to the sorting effect and an
intermediary but that demand smoothing policies are ineffective.
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1 Introduction

When markets surge in a boom or crash in a bust, firms adjust by reallocating capital. Although
it is well established that fluctuations, reallocation, and movements in aggregate productivity are
broadly linked, the exact process of capital reallocation within industries is not well understood.1

Filling this gap is important because the costs and benefits of often-proposed policies - such as
demand smoothing - hinge on the reallocation mechanism.

In this paper I focus on markets where output is made by matching heterogeneous producers
and heterogeneous factor inputs. Here, booms increase entry rates which can create thick factor
markets. This increases the probability of matching, which gives the parties a greater option
value of searching for a better match. In booms, so long as the value of a match does not
increase too much and there is some persistence in the cycle (which are empirical questions),
agents become more selective and avoid bad matches. This results in a sorting effect where
agents are more assortatively matched; these better matches and complementarities in booms
reduce factor misallocation and create procyclical productivity movements.

Overall, the goal of this paper is to answer the questions: what is the quantitative importance of
the sorting effect and to what extent does it spur efficient capital reallocation in booms and busts?
I answer these questions in the context of the market for offshore oil and gas drilling rigs - an
outstanding example of a cyclical decentralized capital market. Using a novel dataset of contracts
and projects, I show that booms (caused by increases in oil and gas prices) are associated
with matching consistent with the sorting effect. I then develop a framework to quantify the
efficiency of reallocation in a decentralized capital market with two-sided vertical heterogeneity
that combines elements of the search and matching literature and the firm dynamics literature.
Applying the framework to the data, I illustrate the economic significance of the sorting effect,
as well as quantifying the value of an intermediary and a demand smoothing policy.

It is important to note that the fact that booms are associated with a sorting effect is not
mechanical. Rather, it is an empirical question whether stronger sorting is optimal in booms.
This is because the value of a match also increases in booms (since oil companies receive a higher

1This is largely due to the lack of producer-level data on covariates such as contracts, production, and rela-
tionships; Collard-Wexler and De Loecker (2015) make a similar argument to motivate their study on reallocation
in the US steel sector. For a broader review of the literature see Eisfeldt and Shi (2018).
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Figure 1: Illustration of the sorting effect

low mid high
Rig type

0.25

0.50

0.75

W
el

l C
om

pl
ex

ity
Bust

Average

low mid high
Rig type

0.25

0.50

0.75

W
el

l C
om

pl
ex

ity

Boom

Average

Note: This figure contains a simple example of the sorting effect. Suppose that in both panels there are
three rigs of each type, {low, mid, high}, and three wells of each type, {0.25, 0.5, 0.75}, where a higher
number corresponds to a more complex well. Each panel plots an allocation of the nine wells to the nine
rigs. In a bust all rigs drill similar wells resulting in a flat average match line. In a boom simple wells
are allocated to low-efficiency rigs and complex wells are allocated to high-efficiency rigs, resulting in a
more diagonal average match line. For a fixed number of rigs and wells, so long as the match value is
supermodular in rig type, there will be higher total output in the boom allocation.

price for a given quantity of oil and gas) and therefore it may be optimal to be less selective.
Overall, I find that the option value effect dominates the match value effect in the data, leading
to pro-cyclical match quality.

The market for offshore drilling rigs is an excellent setting for studying booms and busts because
it is subject to large exogenous fluctuations in drilling activity caused by global oil and gas prices.
Oil and gas companies undertake projects (wells) but do not own capital (drilling rigs). Instead,
they must search for capital in a decentralized market. Capital can be ranked using an industry
measure of efficiency and projects can be ranked using an engineering measure of complexity.
The quality of the match matters: more efficient capital is suited to drilling more complex
projects and this is reflected in sorting patterns in the industry. Therefore, in the offshore
drilling industry, stronger sorting corresponds to more efficient rigs matched to more complex
wells, and less efficient rigs to simpler wells, as illustrated in Figure 1.
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I focus on shallow water oil and gas drilling in the US Gulf of Mexico in 2000-2009. I begin
by discussing several features that suggest search frictions are important in this industry such
as the existence of brokers and the emergence of e-procurement. I then document two main
findings. First, there is positive assortative matching: more efficient drilling rigs tend to drill
more complex wells. Second, booms are associated with matching patterns consistent with
stronger sorting. In a bust (when oil and gas prices are low) all rigs drill relatively similar types
of wells. In a boom high-efficiency rigs tend to match to more complex wells and low-efficiency
rigs tend to match to simpler wells.

Next I estimate a model that captures the institutional details of the industry as well as the
economic logic behind the sorting effect. In the model there are searching agents on both sides
of the market. On one side of the market there are projects (wells that need to be drilled that
are owned by oil and gas companies). On the other side of the market there are drilling rigs
(capital) which are differentiated by efficiency. The model is dynamic. In booms more projects
enter, increasing the market thickness and raising the option value of continuing to search for a
better match. This also increases the opportunity cost of being locked into a bad match. Agents
respond by avoiding bad matches in two ways: they can reject bad matches or, using the search
technology, they can direct their search away from bad matches. Overall these two channels
result in stronger sorting patterns and reduce mismatch.

I estimate the model in two steps. I first construct value functions based on empirical objects
in the data. Then, I estimate parameters using the simulated method of moments. I use the
estimated model to conduct three counterfactuals and I measure welfare in terms of total profits.

The first two counterfactuals center around measuring the efficiency of capital reallocation in
the market: quantifying the sorting effect, and then assessing how much inefficiency remains
after accounting for the sorting effect. I begin by starting from a ‘no sorting’ world where rigs
accept all matches and do not direct their search away from bad matches. Allowing for the
sorting effect increases welfare by 12.0%, or around $536 million dollars, over the 2000-2009
period. The sorting effect is cyclical with more efficiency gains in the boom. Decomposing the
total effect highlights the main tradeoff in the model: compared to the ‘no sorting effect’ model,
agents in the market tend to drill less wells but this is outweighed by the fact that matches are
higher quality.

Next, I quantify the benefits of an intermediary who can reduce search frictions by offering an
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improvement in the search technology. In addition to highlighting the effects of search frictions
that remain even after accounting for the sorting effect, this counterfactual suggests potential
gains from recent advances in e-procurement in the industry. Indeed, the potential of the internet
to reduce search frictions in the industry has been discussed by practitioners since as early as
2002: Rothgerber (2002). I find that the intermediary would achieve a welfare gain of 51.0%
compared to the market benchmark.

Finally, I consider a demand smoothing policy which would eliminate price cycles. This kind of
intervention has precedent in the oil and gas industry: many producer incentives, such as tax
credits, and royalty rates, are tied to oil and gas prices. I find that demand smoothing would
cause large shifts in drilling activity from booms to busts. However, the policy would increase
overall welfare by only 14.9%, suggesting that such policies are somewhat ineffective.

Overall, this paper makes three main contributions. The first contribution is a novel dataset
of a decentralized capital market that is subject to booms and busts. A major difficulty in
studying firm-to-firm markets is that contracts are typically confidential. By contrast, in this
paper I construct a dataset of the universe of contracts in the industry matched with rich micro
data from the regulator on the characteristics of projects undertaken under these contracts. My
analysis of the dataset presents a detailed picture of how firms make decisions when faced with
fluctuations.

The second contribution is to solve a data limitation that often occurs in capital markets:
demand (the distribution of searching wells) is not observed. To fully assess mismatch I need
to identify this object. For example, if only simple projects enter in a bust then it would be
optimal to assign high-efficiency capital only to simple projects. Hence, the potential benefits to
an intermediary or demand smoothing would be low since there is less mismatch. Therefore, I
provide an identification strategy to disentangle changes in the composition of searching projects
from the sorting effect. I also show how a more flexible search technology – which nests typical
assumptions of random search or directed search as special cases - can be identified from data
on matches.2

Third, previous work typically uses a steady-state analysis to tractably incorporate two-sided

2Lentz and Moen (2017) consider a related setup. My approach differs because I need to deal with two-sided
heterogeneity and fluctuations, which pose challenges for identification and estimation.
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heterogeneity in a search model.3 When there are fluctuations, however, the distributions of
agents change through time. In this paper I use an estimation strategy that incorporates - for
the first time in a random search model with fluctuations - two sided heterogeneity, distributions
of searching agents that change over time, and Nash bargaining. The estimation strategy relies
on the observation that the value of searching can be written in terms of data on contract prices
and the probability of matching. My strategy is an extension of approaches in the Industrial
Organization firm dynamics literature such as Kalouptsidi (2014) to cases where short-term
contract data are available.

1.1 Related literature

This paper is related to five strands of literature. First it is related to the literature on capital
reallocation. Eisfeldt and Shi (2018) provide a review of this literature. Recent work, such as
Lanteri (2018), has tried to uncover the mechanisms by which markets reallocate capital. Several
papers show that calibrated models incorporating search frictions can help to fit economy-wide
facts about capital utilization and productivity e.g. Ottonello (2018) and Dong et al. (2020).
This paper advances this literature by - for the first time - providing empirical evidence of how
search frictions affect the inner workings of a real-world capital market in booms and busts.

Second, this paper is related to the literature in Industrial Organization that studies empiri-
cal firm dynamics in decentralized markets. Some recent papers incorporate fluctuations into
search models with homogeneous agents (for example, Buchholz (2022), Frechette et al. (2019)).
A related set of papers study how fluctuations affect long-run firm entry and exit decisions
(Kalouptsidi (2014), Collard-Wexler (2013)). Other recent papers estimate search and matching
models with two-sided heterogeneity in a stationary context (e.g. Gavazza (2016)). By contrast,
my paper contains both fluctuations and heterogeneous agents and I study how the two interact
in a decentralized firm-to-firm market.

Third, this paper is related to the literature about the effects of the business cycle on labor
search and matching. Many of these papers aim to rationalize empirical pro-cyclical productivity
patterns in labor markets e.g. through cyclical job ladders Moscarini and Postel-Vinay (2018),

3An exception is Lise and Robin (2017), who model non-stationary distributions of searching agents by assum-
ing Bertrand wage competition.
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or alternative mechanisms: Barlevy (2002), Lise and Robin (2017). My paper illustrates the
relevance of search and matching models in explaining procyclical productivity patterns outside
the standard labor market context.

Fourth, this paper is related to the theoretical literature on dynamic matching such as Baccara
et al. (2020). Although my framework is quite different to this paper, it shares a focus on
quantifying the gains to a centralized intermediary.

Finally, this paper is related to the economics literature about the oil and gas industry. When
modeling the industry I build on some of the institutional features discussed in Kellogg (2014),
Kellogg (2011), Corts and Singh (2004), and Corts (2008). For credible estimation my empirical
strategy relies on having a measure of participants’ expected value of undertaking a project. In
the context of the Gulf of Mexico an excellent proxy is available: participants’ beliefs about the
value of drilling a well is related directly to lease bids (Porter (1995)).

2 Industry Description and Data

2.1 Overview of the offshore drilling industry

Offshore drilling is an important part of the global oil and gas industry and was valued at $43
Billion USD in 2010 (Kaiser and Snyder (2013)). I analyze a particular segment of this industry:
shallow water (<500ft) drilling in the US Gulf of Mexico.

The offshore drilling industry is decentralized. Lease holders such as BP and Chevron do not
own the equipment used to drill their wells. In order to drill a well a drilling rig must be
procured from a rig owner. Both sides of the industry are unconcentrated with an HHI of 1239
for rig owners and an HHI of 335 for well owners, where I calculate the HHI with the definition of
‘market share’ as the proportion of total contracts. Given that the concentration of this industry
does not seem high enough for individual firms to exert substantial market power I model the
decision problem as a single agent playing against industry aggregates.

What is a drilling rig (capital)? Shallow wells are drilled using ‘jackup rigs’. Jackup rigs
are barges fitted with long support legs that can be raised or lowered. In order to drill a well a
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jackup rig first moves to a well site. Upon arrival the rig then extends (‘jacks down’) its legs into
the seabed for stability and commences drilling. The rig drills 24 hours a day until the well is
completed. Once the well drilling is completed the well is connected to an undersea pipe where
the oil and gas flows back to a refinery on land. The rig then ‘jacks up’ its legs, leaves the well
site, and moves on to the next drilling job.

What is a well (a project)? Oil and gas producers own leases which are tracts of the seabed
where they can drill a well to extract oil and gas. In this paper I use the terms drilling a ‘well’ and
drilling a ‘lease’ interchangeably. Wells produce both oil and natural gas in different quantities.
In the shallow water of the US Gulf of Mexico wells tend to contain more natural gas so I focus
on changes in the gas price as the driver of exogeneous shocks in this industry.4 Once a well has
been drilled an operator extracts oil and gas at maximum capacity for the lifetime of the well
(Anderson et al. (2018)) unless external factors such as hurricanes intervene.

2.2 Data

Overview I construct a new and novel dataset by exploiting a number of rich, proprietary
datasets of firm-to-firm contracts matched with the characteristics of wells drilled under each
contract. Descriptive statistics for the industry are in Table 1. I focus on the subset of data for
the years 2000-2009. The year 2000 is the earliest year for one of the contract datasets and so
it is the earliest year I have a full picture of the industry. In 2010 the now infamous Deepwater
Horizon oil spill triggered a new and tighter regulatory environment. Therefore I focus on the
years before 2010.

Contract data The contract data come from two sources: IHS and Rigzone. The Rigzone
dataset contains all offshore drilling contracts worldwide. The Rigzone dataset has detailed
information on the status of rigs currently drilling and if they are not drilling whether they
are available or off the market (for example, the rig has been scrapped). I use these data to
compute how many rigs are available at a point in time in the US Gulf of Mexico. In total there
are 101 rigs on average in my sample period in the Gulf of Mexico. The IHS contract dataset

4Furthermore, in the sample period the oil price is correlated with the natural gas price. I show in Appendix
E.2 that simply tracking the natural gas price does not make any difference to the results.
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Table 1: Summary statistics for the dataset

Variable Units N Mean SD 10% 90%

Rig Price - New Contracts 1000s of USD/day 1733 62 35 27 111

Duration - New Contracts Days 1733 65 76 27 120

Rig Price - Renegotiations 1000s of USD/day 922 52 26 28 81

Duration - Renegotiations Days 922 68 59 29 126

Value Millions of USD 2655 8.8 25 0.25 8

Complexity Index 2655 0.87 0.51 0.34 1.46

Water Depth Feet 2655 117 80 37 233

Monthly Utilization % Rigs under contract 360 0.76 0.2 0.49 1.0

Note: Monthly utilization is for each of the 3 types of rig over 120 months.

has slightly more detailed information on whether the contract is new or an extension and so I
merge this dataset with the well data.

Contracts follow a simple form: rig owners are paid a fixed price ‘dayrate’ for the length of the
contract. Contracts can differ in their length and I treat differences in the duration of contracts
as one of the characteristics of a project. Contracts are also often extended, and this is typically
to drill a new well. A small number (11.0 percent) of contracts are ‘turnkey’ contracts which
means that the rig operator, rather than the well owner, is responsible for additional costs if
there are cost overruns such as a well blowout. Since the proportion of turnkey contracts in my
sample is smaller than in Corts and Singh (2004), who study the industry in an earlier period
(July 1998-October 2000), I do not model the choice of contract form explicitly.

Well data The well data come from the Bureau of Safety and Environmental Enforcement
(BSEE). The well permit data contain detailed information about the characteristics of each
well including depth, location, mud weight, oil and gas produced, etc.

In addition I have lease bid data from which I can estimate participants’ beliefs about the value
of drilling a well because it is related directly to lease bids (Porter (1995)). To do this I take
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the highest bid for the corresponding lease.5 In order to back out the quantity of hydrocarbons
in the well, I then divide by the average gas price in the sample. My measure is a monotonic
function of the expected oil and gas deposit size.

Measuring well heterogeneity To rank wells I compute an engineering model of well com-
plexity used in the industry called the ‘Mechanical Risk Index’. The Mechanical Risk Index
takes well covariates including depth, mud weight, horizontal displacement etc that describe the
geological environment and transforms them into a one-dimensional index of well complexity.6

More complex wells (for example, a deep well that needs to bend around a difficult geological
formation) are more costly to drill because there is a higher probability of encountering a prob-
lematic formation. Costs are typically in the form of extra materials when the rig encounters a
problem. A higher ranking on the index corresponds to a more complex well.

Measuring rig heterogeneity Rigs are vertically differentiated. A natural ranking for cap-
ital (drilling rigs) is their maximum drilling depth in water which ranges from 85 ft to 450 ft.
This is a good proxy for many other characteristics of rig efficiency including age and technology.
This ranking is also used in the industry and rig owners market rigs that can drill in deeper
water as ‘high-specification’ rigs. Due to a limited sample size, for estimation I aggregate rigs
into three classes by their maximum drilling depth: low (≤ 200 feet), mid (> 200 feet and < 300
feet), and high efficiency rigs (≥ 300 feet). (Note that the split is not quite exact because there
are sometimes many rigs of exactly the same drilling depth.) One might ask whether rigs are
also differentiated by other factors. Two possible factors are: (i) the distance between a rig and
a particular well, and (ii) past experience between a rig operator and a well owner. I provide a
discussion in Appendix A.3 about why it is likely that these factors are of probably of limited
importance in the offshore oil and gas industry.

5This is motivated by the fact that offshore lease auctions are common value auctions and as the number of
bidders n → ∞ the maximum bid converges to the expected value of oil and gas in the prospect. Although in
practice the number of bidders is finite, see Haile et al. (2010) for evidence that ex-post returns in shallow water
OCS auctions are not excessive.

6Details on the calculation of the Mechanical Risk Index can be found in Appendix A.2.
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2.3 Key features of the industry

The offshore drilling industry is characterized by three key features: (1) sorting patterns; (2)
booms and busts driven by oil and gas prices; (3) search frictions.

2.3.1 Feature 1: Sorting patterns

Figure 2 illustrates the pattern of positive assortative matching in the data. It shows that better
rigs tend to drill more complex wells on average. In addition I plot the 10% and 90% quantile of
well complexity observed in the sample. The figure shows that although there is positive sorting,
there is not perfect segmentation in this industry: even the highest-ranked rigs still drill simple
wells.

The observed sorting patterns imply that the match between rig technology and the well com-
plexity matters. Qualitative evidence from the industry provides more detail about how agents
make decisions about who to match with. For example, the website of Diamond Offshore, a rig
owner, states: ‘Oil companies (“operators") select rigs that are specifically suited for a particular

job, because each rig and each well has its own specifications and the rig must be matched to

the well’7. Note that in Table A-1 in the Appendix I perform a hedonic regression of prices on
match characteristics.

2.3.2 Feature 2: Booms and busts

Figure 3 displays how fluctuations in the natural gas price affect rig prices in the industry.
Figure 3 shows that there is a strong correlation between gas prices and rig prices: rigs can
command prices in excess of $100 thousand per day when gas prices are high but this can fall
to $30 thousand per day when gas prices are low. Rig utilization is also cyclical and I document
rig utilization patterns in Table A-5 in Appendix D.4.

How booms and busts affect matching Panel (a) of Figure 4 provides evidence consistent
with stronger sorting in booms than busts. In the Figure I split the data up into two bins: a

7http://www.diamondoffshore.com/offshore-drilling-basics/offshore-rig-basics
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Figure 2: Positive assortative matching: higher ranked rigs match with more complex wells
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(a) Average match for each rig type
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(b) Matching range (10% to 90%)

Note: This figure shows the sorting patterns in the data. Rigs are constructed in discrete increments of
maximum drilling depth and so each point on the x-axis might correspond to many unique rigs.

gas price above average which I label a ‘boom’ and a gas price below average which I label a
‘bust’. I then plot the average match in the raw data across the three types of rigs. Figure 4
shows a rotation in the average match line between rig rankings and well complexity rankings.
Here, less efficient rigs are matched to simpler wells in booms than busts, and more efficient rigs
are more likely to be matched to complex wells in booms than busts. I verify in the right panel
(which is based on confidence intervals from Table A-4 in the Appendix) that these effects are
statistically significant across the boom-bust cycle, and robust to controls for observables.

There are two possible explanations for the matching patterns in Panel (a) of Figure 4. One
explanation is stronger sorting: capital is better matched in booms. However, since the dis-
tribution of searching wells is not observed, these patterns may also arise from changes in the
composition of searching wells (demand). Consistent with the stronger sorting explanation, in
Appendix D.3, I also show that there are stronger synergies between high-efficiency rigs and
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Figure 3: Booms and busts
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Figure 4: Matching patterns in booms and busts
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(b) Differences in average match in boom vs bust

95% Confidence Interval

Note: Panel (a) shows that when a bust turns to a boom, the market features stronger sorting patterns.
Panel (b) shows that these differences in matching patterns are statistically significant, using confidence
intervals from Table A-4 in the Appendix. Figure A-3 in the Appendix shows the overall composition of
matches in booms and busts is relatively similar.

13



complex wells in booms, as reflected in prices.

2.3.3 Feature 3: Search frictions

Rigs are selected in practice through the following process. Oil company engineers will first
determine the well design, write up the details, and initially solicit rigs, sometimes with the aid
of specialized rig brokers. The rig selection process rarely ends there: offshore rig companies
stress that the process of obtaining an offshore rig can be relatively unstructured, with further
discussions between the parties and that ultimately "our contracts to provide offshore drilling
services are individually negotiated" Transocean (2015). Since my dataset only contains data
on the eventual outcomes of this process and no information about interim discussions, I use a
reduced form of how this process occurs in practice, ending with one rig ultimately selected.

Next, I discuss several institutional features which suggest search frictions in the industry. A
key feature is that both rig owners and well owners often enlist the help of a fragmented group
of brokers to help find a match, such as Clarksons, Bassoe Offshore, and Pareto Offshore. As
discussed by Brancaccio et al. (2022), the very existence of brokers has been used in a variety
of settings as evidence of search frictions. In addition, another feature is the emergence of
e-procurement in the industry.8 These recent technological improvements to the search and
matching process suggest that in the earlier period of this study, there were potential gains to
better matching that were unrealized.

Second, the industry is unconcentrated on both sides with a large number of agents simulta-
neously trying to match with each other in an uncoordinated fashion. In addition, since this
industry is constantly in flux, participants may not have good information about the status
of other rigs.9 As is argued in the macroeconomics search literature, modeling each of these
sources of frictions and heterogeneity explicitly would “introduce intractable complexities” into
the model Petrongolo and Pissarides (2001). Instead, I include a reduced-form matching function
that allows for realistic frictions in the search process.

8For an early discussion about the potential benefits to e-procurement in the industry see Rothgerber (2002).
Raghothamarao (2016) discusses how advances in e-procurement are being used in the oil and gas industry.

9For example, which rigs have not yet signed a contract but are in a late stage of negotiations, or if a rig
suddenly needs maintenance, or other idiosyncratic heterogeneity.
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Table 2: Evidence of price dispersion

(a) (b)

Using aggregated rig types Using disaggregated rig types

1 − R2 0.37 0.27

SD(p̃it) 11 9

SD(p̂it) 18 18

Note: Standard deviations are measured in thousands of US dollars per day. The dependent variable p̂it

is prices de-meaned by the average price in each month. The residual from the price regression is denoted
by p̃it.

Price dispersion Next I show suggestive evidence for search frictions in the data by showing
that different prices are paid for observationally equivalent matches. Although price dispersion is
consistent with search frictions, note that it is not a sufficient condition, and so the results in this
section should be interpreted with that caveat. Since price will also vary with market conditions
I de-mean prices by the average price in each month. I regress these de-meaned prices on rig
characteristics, well characteristics, and contract characteristics. I run the following regression
on new contracts:

p̂it = X′β + p̃it (1)

Where p̂it are the demeaned prices for match i at month t and p̃it are residual prices (that is,
the residual after regressing prices on the covariates). I use the following covariates X, as well as
a third order polynomial of the state variables (gas price and rig availability of each aggregated
rig type), and interactions between rig types and a third-order polynomial of well characteristics
and a third-order polynomial of contract duration:

X ={well complexity, well water depth, well value, gas price, rig availability, contract duration

rig type FEs, month FEs, year FEs, contractor FEs, rig owner FEs, rig to well distance}

In Table 2 I report the unexplained variation 1 − R2, the standard deviation of residual prices
p̃it, and the standard deviation of all prices p̂it. In panel (a) ‘rig-type’ is the aggregated classes
(i.e. using {high, mid, low}); in panel (b) ‘rig-type’ is the disaggregated rig classes (i.e. by
maximum drilling depth).
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Table 3: Documenting mismatch

Change in Match Value (Millions USD)

Bust Boom Difference: Bust vs Boom

Optimal Match vs Empirical Match 0.758 0.594 0.164

T-test 0.002*** 0.01*** 0.029**

Note: This table previews the full model-based results through documenting instances of mismatch by
reallocating empirical matches to optimal matches. I measure the degree of mismatch using the estimated
match values from the model. I report the average change at the contract level (for comparison, the
average payment to a rig for a new contract is around $3 million USD). I split the results into the
improvements to matching in the bust, the boom, and the difference in the boom/bust change. I also
report p-values from a t-test for the difference in mean match values, where: * p < 0.1, ** p < 0.05, ***
p < 0.01.

Despite controlling for detailed match and contract characteristics Table 2 illustrates there is a
high amount of unexplained price variation: 0.37 of total price variation is unexplained when
using the aggregated rig types and 0.27 of total price variation is unexplained when using the
finer disaggregated rig types. Similarly, the standard deviation of residual prices is 11 thousand
USD/day when using aggregated rig types and 9 thousand USD/day when using disaggregated
rig types. The high unexplained price variation in the data is consistent with a model of search
frictions where the ‘law of one price’ does not hold. Recent papers that document a similar
magnitude of price dispersion in firm-to-firm search markets are Salz (2022) and Brancaccio
et al. (2022).

Documenting instances of mismatch I preview the bottom-line results in the paper with
an exercise that documents instances of mismatch by combining the raw data with selected
parameters of the model, in the following way. I take the observed matches in each period
and reallocate the rigs and wells in these matches optimally using a linear sum assignment
algorithm. For example, if there is a new match between a high-efficiency rig and a simple well,
and simultaneously a new match between a low-efficiency rig and a complex well, the algorithm
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will reallocate these matches. I detail the algorithm in Appendix C.1.10

I report the results from the above procedure in Table 3. In this table I split up the benefits
to better matching into the bust versus the boom. I also test for differences in the average
match value in the bust compared to the boom. There are two main findings. First, there are
benefits to better matching across the cycle. In a bust the average increase in match value is
$0.758 million; for comparison, the average payment to a rig for a new contract is around $3
million. In a boom the average increase in match value is $0.594 million. Second, this return is
counter-cyclical: the returns to better matching are higher in the bust than the boom by $0.164
million, which is consistent with the sorting effect.

3 The Model: Sequential Search with Booms and Busts

3.1 Environment

Agents Agents are capital owners (owners of rigs) and projects (potential wells). The char-
acteristics of a project are x = (xcomplexity, xquantity, τ). Here, xcomplexity is the complexity of
a project, xquantity is the quantity of hydrocarbons (oil and gas), and τ is the duration of the
project in months. I do not directly include the water depth in these characteristics because it
is part of the well complexity index xcomplexity.

There are Kt draws of potential projects in each period, which are undrilled leases in the US Gulf
of Mexico. The dependence on t is used to capture the fact that the number of potential projects
may be changing over time. For example, an increase in the gas price may induce drillers to
revisit old prospects, or to be more likely to explore new tracts. Each of these potential projects
has characteristics drawn from fx - the probability density of potential projects.

Capital differs in its efficiency y ∈ Y = {low, mid, high}. Capital is either available to match
or under contract. Only available capital can match with a project, and I denote the amount of

10Whether this example of reallocation - which involves more assortatively matching the two sides of the market
- is truly optimal depends on the underlying match value. Therefore, in order to compute the optimal matches,
as well as quantify the degree of mismatch, I use the match values I later estimate in the model in this exercise.
These match values convert a given rig-well match into a dollar figure. Beyond these match values I place no
additional assumptions on the data, using just the empirical matches and available rigs.
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available capital of type y at time t by nyt.

Timing The model is dynamic and one period in the model is one month.11 To keep notation
concise, let the subscript t represent objects at the time t state st. The timing in each period is:

1. Contract extensions. Existing matches are extended with probability ηxyt which is depen-
dent on the state as well as the value of a particular match.

2. Entry. The set of potential projects is comprised of Kt draws from a distribution fx. Each
potential project chooses whether to enter and search for capital. Denote the probability
of entry for a type-x project as ext.

3. Search. Each type of capital is located in a submarket. Meetings are determined proba-
bilistically within each submarket as a function of the market tightness θyt (the ratio of
available capital to the mass of searching projects). Figure 5 provides a diagram of the
search and matching process. Projects are able to direct their search towards a particular
capital submarket using a search technology. Denote the probability that a type-x project
targets type-y capital at time t with the search technology as ωxyt. Using the above nota-
tion the market tightness can also be formally defined as θyt = nyt/(Kt ·

∫
ωxytextfxdx).

4. Matching. If a project owner contacts a capital owner then agents choose whether to match.
Prices are determined by Nash bargaining and since this implies perfectly transferable
utility a match will be accepted if the total match surplus is positive. Therefore, define
the acceptance set as Ayt =

{
x : Sxyt ≥ 0

}
. If capital is matched then it cannot match

for the duration of the contract (τ periods). If agents choose to not match then projects
exit the market immediately and the capital is available to match in the next period.12

Note that in the Appendix (Section E.3) I run robustness checks around the assumption
of myopic projects and find that relaxing this assumption does not substantially change
the results.

11I verify in Table A-10 in the Appendix that halving the period length does not affect the results substantially.
12The assumption that well owners exit immediately if unmatched is based on the fact that well owners tend to

wait until the end of their lease to drill a well and so cannot continue to search. Previous literature suggests that
well owners do this because they are waiting to see if the drilling of neighboring leases reveals good information
about a project (Hendricks and Kovenock (1989), Hendricks and Porter (1996)). If the lease elapses without
drilling taking place then the well owner forfeits the rights to the lease, which leads to drilling at the end of the
lease (this fact is also documented for the onshore oil and gas industry in Herrnstadt et al. (2020)).
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Value of a match I use the following specification for the per-period value of a match k

periods after the time t that the match is created:

vxyt,k = m0,y + m1,y · xcomplexity + m2 · Et

[
gt+k

]
xquantity (2)

and so the total value of a contract is ∑τ−1
k=0 βkvxyt,k. The above equation can be broken down

into two main components. The first component is the match value added: m0,y + m1,y ·

xcomplexity. Here m0,y and m1,y are coefficients that vary with rig type. This equation captures
complementarities between rig type and well type through m1,y. For example, a low-specification
rig drilling more complex wells may reduce the match value through higher costs in the form of
blowouts or extra materials after a drilling incident. On the other hand, if high-efficiency capital
is well-suited to undertaking complex projects then m1,y will be high. These parameters will
determine how beneficial positive sorting is for welfare. For example, in a static setting with
no search frictions, positive sorting is the optimal allocation if the match value is supermodular
(m1,high > m1,mid > m1,low) (Becker (1973)).

The second component is m2 · Et

[
gt+k

]
xquantity. This component captures the expected total

value of oil and gas that is produced. The variable gt+k is the gas price at the period t + k.
Since the covariate xquantity is the ex-ante quantity of hydrocarbons in the well (proxied by the
maximum bid in the lease auction and then converted to a quantity as discussed in the previous
section), I include a parameter m2 which is defined as the weight that agents put on this ex-ante
proxy when making decisions.

Note that the quantity of oil and gas extracted from the well does not depend on the rig
type. Rather, the quantity of hydrocarbons that a well produces is dependent on geological
features. Consistent with this assumption, the focus of industry practitioners and the engineering
literature is how rig choices and well design affect extraction costs e.g. Hossain (2015). The
expected value of oil and gas scales with the length of the contract since longer contracts usually
involve constructing multiple similar wells over the same oil and gas deposit, rather than a single
well being drilled over many periods. For example, the average well in the sample takes 22.1
days from when the drill enters the sea floor to when it reaches the target depth (from the ‘spud
date’ to ‘depth date’) and an additional few days to ‘complete’ (cap and run in the production
tube), which is approximately one month in total and one period in the model. Drill times are
relatively similar across wells, e.g. the 0.75 quantile is 26.0 days.
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Figure 5: Search and matching within each submarket

potential projects x ∼ fx

enter with prob. ext

target capital y

with prob. ωxyt

matching:
market tightness: θyt

prob. project meets: qproject
y (θyt)

prob. capital meets: qcapital
y (θyt)

available capital
of type y (nyt)

t − 1

unemployed capital
of type y

match if Sxyt ≥ 0
project’s payoff: Wxyt

capital’s payoff: Vxyt

unmatched projects
exit

t + 1 t + 1

Notes: This figure illustrates how capital and projects match. At the beginning of each period there is
a distribution of searching projects and available capital nyt. The searching projects first choose which
type of capital to target. Meetings are determined randomly within each submarket and are dependent
on the market tightness θyt. Finally, agents choose whether to match based on whether the total surplus
of a match is positive (Sxyt ≥ 0).
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Summary Agents make three main choices in the model (with the rest of the model deter-
mined endogenously in equilibrium): a project entry decision, a project targeting decision, and
whether to match if agents successfully contact each other. Overall the model focuses on the
dynamic tradeoff for capital owners.

Comparison to previous industrial organization work on search and matching mod-
els The key difference I need to contend with in my setting is two-sided vertical heterogeneity.
This contrasts with previously studied markets like taxis (e.g. Buchholz (2022)) and bulk ship-
ping (e.g. Brancaccio et al. (2020)) where agents are relatively homogeneous. Due to this feature
the model departs from the past industrial organization literature in search and matching mod-
els in two main ways. First, I allow for search to be (partially) directed, where heterogeneous
projects can target the type of capital that they are best suited to match with. Second, I account
for the fact that matches can be rejected and so agents have acceptance sets.

My framework also shares some elements with previous work. Most notably, once projects have
decided which type of capital to target, meetings take place within a sub-market in a similar way
to how they would within an individual location in a taxi market, or a port in the bulk shipping
market.13 Within a location distance is assumed to not explicitly factor into rig selection; as
previously mentioned and also discussed in Appendix A.3, this seems a reasonable assumption.

3.2 Demand for capital

Payoffs First I consider the profits to a type-x project matching with type-y capital. Intu-
itively, the profit will depend on the per-period match value and the per-period capital price. In
addition, because contracts can be extended, agents will take these future contract extensions
into account as well when matching. Overall, the value to a project owner from matching is:

Wxyt =
τ−1∑
k=0

βk

ï
vxyt,k − pxyt

ò
︸ ︷︷ ︸

Value of the initial contract

+ βτEt

ï
ηxy,t+τ Wxy,t+τ

ò
︸ ︷︷ ︸

Extension value

(3)

The project owner’s value of matching Wxyt can be decomposed in the following way. For each

13In this way, Figure 5 which sets out how meetings take place within a sub-market, can be compared to a
similar figure in Buchholz (2022).
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period of the τ length contract the project owner receives the match value vxyt,k minus the
price pxyt to hire the capital. The contract will be extended with probability ηxy,t+τ which is
dependent on the state at time t + τ and the value of the match. In Appendix D.1 I show
that the assumption that the extended contract has the same duration as the initial contract is
reasonable.

Partially directed search I first discuss how search operates once entry has occurred and
then I turn to the entry decision. In the search process, potential projects choose which capital
submarket to search in. The choice of submarket depends on the characteristics of the project,
as well as the probability of matching within each submarket which is governed by the matching
technology qproject

y (θyt), amongst other things. For a type-x project denote the (expected) value
of searching in the type-y capital submarket as πxyt = qproject

y (θyt)Wxyt.

I allow for a flexible search technology: partially directed search. To derive this technology
from individual decisions, denote each unit of available capital by j and the corresponding type
as yj . Similarly, denote each searching project by i and its corresponding type by xi. In the
special case where search is perfectly directed then each potential project i will choose j to solve
maxj πxiyjt. In my setting, I allow for a more flexible search technology by instead modeling
potential projects targeting capital based on a perceived value π̂xiyjt which is defined as:

π̂xiyjt = πxiyjt − γ11
[
xi /∈ Ayjt

]
+ ϵtarget

ijt (4)

I assume that ϵtarget
ijt are drawn from an i.i.d. type-1 extreme value distribution with scale

parameter 1/γ0. The interpretation of γ0 and γ1 is that they are ‘targeting parameters’ that
index how precisely a project can target capital, and 1[x /∈ Ayt] is an indicator function for
whether the match will be rejected. I allow for targeting to be responsive to both whether the
match will be rejected (the parameter γ1) as well as the overall quality of the match: γ0. The
motivation for including the γ1 component is that whether a match could be rejected might be
more salient to capital owners than other features of the match - I allow the data to determine
whether this is the case.

Aggregating the conditional choice probabilities that result from max
j

π̂xiyjt across all capital of
the same type, and dispensing with the i and j subscripts, results in the probability of a project
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of type x targeting a rig of type y:

ωxyt =
nyt exp

(
γ0
[
πxyt − γ11

[
x /∈ Ayt

]])
∑

k∈Y
nkt exp

(
γ0
[
πxkt − γ11

[
x /∈ Akt

]]) (5)

This search technology is more flexible than the typical assumptions of random search or directed
search which are used in search models. At the extremes this specification nests random search
(at γ0 = 0, where projects contact capital completely at random) and directed search (as γ0 →

∞, where projects can perfectly identify the best match).

Entry Before making the targeting decision each potential project chooses whether to enter.
This decision is: max

¶∑
k∈Y ωxktπxkt − c + ϵentry

t , ϵno entry
t

©
. Here, c is the entry cost and ϵentry

t ,
ϵno entry
t are drawn from an i.i.d. type-1 extreme value distribution. The first term in the

maximization is the expected benefit of entering. The entry cost c takes into account the cost of
submitting a permit (which includes a detailed project design) to the regulator, amongst other
things. The resulting conditional choice probability that a project enters is:

ext =
exp

(∑
k∈Y ωxktπxkt − c

)
1 + exp

(∑
k∈Y ωxktπxkt − c

) (6)

Demand for capital Aggregating up the individual project entry and targeting decisions
results in the demand for capital. Denote hxyt as the probability that type-y capital will be
contacted by a type-x project. This is given by:

hxyt = qcapital
y (θyt) · ωxytextfx∫

z ωzyteztfzdz
(7)

and the probability that capital is not contacted by any project is h∅yt = 1 − qcapital
y (θyt).

The above setup allows for considerable flexibility in how demand changes in booms and busts
along two dimensions. First, the probability of capital finding a project may increase when the
market moves from a bust to a boom if the number of potential project draws Kt increases
in a boom. Second, the distribution of trading opportunities hxyt will change due to different
projects entering and different targeting behavior. Given demand for capital, I now turn to the
capital owners’ problem.

23



3.3 Capital owners’ problem

If capital is contacted by a project it faces the following tradeoff. Accept the match - and be
unable to match for the duration of the contract - or search again for a better match after one
period: max

{
Vxyt, βEtUy,t+1

}
. Here, Vxyt is the profit from matching and is given by:

Vxyt =
τ−1∑
k=0

βkpxyt + βτEt

ï
ηxy,t+τ Vxy,t+τ + (1 − ηxy,t+τ )Uy,t+τ

ò
(8)

The profit from matching Vxyt can be decomposed as follows. The rig will first receive the value
of the contract, which is the per period price pxyt for τ periods. When the contract is complete
the rig owner receives Vxy,t+τ if the contract is extended. If the contract is not extended then
the rig will be available to search again and will receive Uy,t+τ .

The value of searching is:

Uyt =
∫

z
max

{
Vzyt, βEtUy,t+1

}
hzytdz︸ ︷︷ ︸

Exp. Value Of A Meeting

+h∅yt βEtUy,t+1︸ ︷︷ ︸
No Meeting

(9)

The first term is the expected value of a meeting: capital meets a particular project type with
probability hzyt and it will choose whether or not to match with it. If capital is not contacted
by a project (which happens with probability h∅yt) then it will be unemployed for one period
but will be available the following period.

Bargaining If capital and a project match then prices are determined by generalized Nash
bargaining where δ ∈ [0, 1] is the bargaining weight:

pxyt = argmaxpxyt
[Vxyt − βEtUy,t+1]δ [Wxyt]1−δ (10)

Note that prices pxyt are embedded in the value of matching for capital Vxyt and projects Wxyt.
The outside option for the capital is to search again the following period for another match,
with value βEtUy,t+1. Since the project will exit immediately if it is not matched, the project’s
outside option is 0.

Total surplus and contract extensions The total surplus of a match is given by: Sxyt =
Wxyt + Vxyt − βEtUy,t+1. I assume that the contract will be extended if two conditions are
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satisfied: (i) the match surplus is still positive at the time of extension and (ii) drilling on the
original prospect reveals good information that induces the contract to be extended which I
model as a draw from a Bernoulli distribution with parameter η. These two conditions imply
the probability of an extension is ηxy,t+τ = η1 [Sxy,t+τ ≥ 0].

3.4 Transitions and states

Transitions At the start of each period, rigs are either unemployed or are currently matched.
If a rig is currently matched denote τk as the number of periods remaining on its contract.
Matches with τk = 0 are possibly extended. Rigs that are unemployed or whose contracts are
not extended are available to match. Rigs which do not find a new match become unemployed.
At the end of each period, τk counts down by 1.

States The detailed industry state in each period is the price in dollars for natural gas gt,
the distribution of current matches, and the distribution of unemployed rigs. Modeling firms as
keeping track of the full industry state would be computationally difficult due to the curse of
dimensionality. I assume instead that firms keep track of their own state and some moments of
the industry state. This is similar to a moment-based Markov Equilibrium (Ifrach and Weintraub
(2017)). I assume these moments that characterize an agent’s beliefs about state st are:

st = [gt, nlow,t, nmid,t, nhigh,t] (11)

Here ny,t is the number of available rigs of type y at time t, and gt is the natural gas price
at time t. A rig is available to match if it either enters the period unemployed or if there are
zero periods remaining on its contract and the match is not extended. I choose these states
because these statistics are commonly reported in the annual reports of rig owners and are used
by firms who track the industry to describe the state of the market. Note that while I assume
that the agents are relatively small and so take the industry state as given, the actions of the
many individual agents scale up to the aggregate state.

I model agents’ beliefs about equilibrium industry state transitions as an AR(1) process: st =
R0+R1st−1+ϵt. I assume that rig transitions are deterministic so the only stochastic component
in the model is the gas price error term, which implies that Σ = Diag(σϵ, 0, 0, 0). In the R1

matrix, I set the coefficients in the gt updating rule to zero except for the coefficent on gt−1.
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That is, while changes in the natural gas price cause changes in rig availability in the Gulf of
Mexico, rig availability in the Gulf of Mexico does not affect the global natural gas price.

3.5 Equilibrium

Equilibrium is defined as a set of prices pxyt, capital availability {nyt}y∈{low,mid,high}, demand
for capital hxyt, targeting weights ωxyt, entry probability ext, submarket tightness {θyt}y∈Y , and
agents’ state transition beliefs, that satisfy at each state st:

1. The targeting weights ωxyt, the entry probability ext, and submarket tightness {θyt}y∈Y ,
determined by Equations (3) - (6)

2. Demand for capital hxyt determined by Equation (7)

3. Agents optimally choose whether to accept/wait if matched using Equations (8) and (9).

4. Equilibrium prices pxyt determined by Nash bargaining: Equation (10)

5. Updating rule for the distribution of capital {nyt}y∈Y according to the description in
Section 3.4.

6. Beliefs about the future evolution of states given by an AR(1) process.

4 Estimation and Identification

4.1 Overview

I present all the parameters in Table 4 and now discuss the specification of model objects, as
well as how I calibrate certain parameters.

Calibrated parameters I calibrate the discount parameter to β = 0.99 (recall that one
period is one month). I calibrate the entry cost c using industry studies that decompose drilling
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expenditure into entry costs (‘pre-spud costs’) vs other costs. Using the average total payment
to a rig owner as my measure for other drilling costs, I calibrate c = 1.32 million USD.14

Empirical specification: meeting technology For the meeting technology within each
capital submarket I use the following parametric forms:

qcapital
y (θyt) = min{1 − exp(−ay/θyt), 1/θyt} (12)

qproject
y (θyt) = min{θyt(1 − exp(−ay/θyt)), 1} (13)

This meeting technology can be derived as an approximation to an urn-ball matching function
with a large number of agents (see Petrongolo and Pissarides (2001) for a derivation). I also
bound the meeting technology to prevent the model predicting more matches than there is
available capital.

Empirical specification: demand I use the specification that there are Kt = k0 + k1gt

potential projects in each period, where gt is the natural gas price and k0 and k1 are parameters.
I place the following parametric assumptions on the distribution of potential wells fx:

• The quantity of hydrocarbons is a third-dimensional polynomial of the well complexity:
xquantity = ρ0 + ρ1xcomplexity + ρ2(xcomplexity)2 + ρ3(xcomplexity)3 where ρ0, ρ1, ρ2, and ρ3,
are parameters. I run an OLS regression to recover the parameters ρ0, ρ1, ρ2, ρ3.

• Contract durations are for either 2, 3, or 4 months, and are distributed independently of
the other covariates with probability weights (τ2, τ3, τ4), where τ4 = 1 − τ2 − τ3.

• Well complexity is distributed as a truncated normal: xcomplexity ∼ TN(µ, σ) where the
parameters µ, σ need to be estimated. I choose the minimum of the truncated normal as
xcomplexity = 0 and the maximum as xcomplexity = 2.15.

14Specifically, I rely on Hossain (2015) which puts pre-spud drilling costs at around 18% of total expenses.
Using this number, and setting other expenses to the mean total payment to a rig (including extensions), which
is around $6 million, I calibrate the entry cost as c = (0.18/0.82) × 6 = 1.32 million dollars.
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Table 4: Overview of how the model components are computed

Object Parameters Method

Discount rate, monthly β Calibrated: Preliminary

Entry cost c Calibrated: Preliminary

State transition beliefs R0, R1, σϵ Estimated: Step 1

Bargaining weight δ Calibrated: Step 1

Demand distribution τ2, τ3, τ4, µ, σ, ρ0, ρ1, ρ2, ρ3 Estimated: Step 2

Demand draws k0, k1 Estimated: Step 2

Match value {m0,y, m1,y}y∈Y , m2 Estimated: Step 2

Extension parameter η Estimated: Step 2

Targeting parameters γ0, γ1 Estimated: Step 2

Meeting Technology {ay}y∈Y Estimated: Step 2

Note: This table provides an overview of the parameters to be estimated or calibrated.

4.2 Estimation

I estimate the model in two steps, similar to much of the literature on dynamic games (e.g.
Bajari et al. (2007)). In the first step I compute conditional choice probabilities and state
transitions from the data. In the second step the parameters are estimated via simulated method
of moments. A point of departure from the standard two-step approach is that I show that the
value function for searching Uyt can also be computed in the first step directly from the data,
which then serves as an input into the estimation of parameters in later steps. This is an
extension of recent approaches in the Industrial Organization firm dynamics literature to cases
where short-term contract data are available; for example, Kalouptsidi (2014) uses data on
second-hand sales to estimate value functions.

Step 1 I estimate the beliefs over the state transitions using maximum likelihood and the data
on empirical state transitions. The value of searching can then be written non-parametrically
through forward simulation of these state transitions, data on matches, data on prices, and data
on the probability of extending a contract; I provide a more formal proof of this in Appendix
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B.2. In Appendix C.2 I provide more details about how I construct the objects that the value
functions can be built from as well as detailing the forward simulation algorithm.

I then calibrate the bargaining parameter using a similar strategy to Brancaccio et al. (2020). I
focus on the year 2005 when the market was approximately in a steady-state with the gas price
near its long-run average. I compute a non-stochastic steady state of the model. Then, using
external data from the annual reports of the largest oil and gas companies in the Gulf of Mexico,
I compute total revenue and operating margins. Intuitively, the bargaining weight is set so that
the split of surplus between capital owners and project owners is consistent with these operating
margins. I provide more details in Appendix B.4.

Step 2: Simulated Method of Moments I simulate the model from January 2000 to
December 2009. The simulation algorithm computes the equilibrium entry and targeting choices
of potential wells, as well as the matching accept/reject decisions and contract extensions, given
the value functions which were computed in Step 1. I provide complete details on the simulation
algorithm, as well as the implementation of the simulated method of moments, in Appendix C.5.

4.3 Identification and Choice of Moments

I now discuss the intuition behind how the parameters are identified and the choice of moments.
I leave a more rigorous discussion of identification to Appendix B.5. Overall, a major challenge
is that the matching patterns in the data (e.g. in Panel (a) of Figure 4) could be generated
by compositional changes in the set of searching wells, or by the sorting effect. Therefore,
amongst other things, I show that acceptance sets and the targeting parameters can be separately
identified from the distribution of wells.

Identifying the parameters underlying the match surplus and acceptance sets I
identify the match value parameters (m0,y, m1,y, and m2) using the price data for matches.
Intuitively, after adjusting for the outside option and the bargaining parameter δ, higher prices
identify a higher-value match. I operationalize this idea by first rearranging the Nash bargaining
solution in the following way, which I derive in Appendix B.3:

pxyt = (1 − δ)zxyt + δm0,y + δm1,yxcomplexity + δ

ñ∑τ−1
k=0 βkEt[gt+k]∑τ−1

k=0 βk

ô
xquantity (14)
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Here, zxyt is an object that can be constructed from the data that includes the outside option.
Based on this equation, in estimation I run the following auxiliary regression and obtain the β̂

coefficients:

pxyt − (1 − δ)zxyt = β̂0,y + β̂1,yxcomplexity + β̂2gtxquantity (15)

I run a similar regression using the model, and match the β̂ coefficients as moments to identify
the match value parameters. For simplicity, I just use the gas price in the first period of the
contract in this regression. I also include two additional price moments that correspond to the
price difference between high/mid rigs, and mid/low rigs; these moments ensure the model also
generates the ordering in average prices as rig-specification increases. The final parameter of
the match surplus that remains is the extension probability η, which I identify by including a
moment for the average probability of extending a contract over the sample period.

With the match value parameters identified and the rig’s value of searching computed from Step
1, I can then construct the match surplus. As well, acceptance sets can be constructed since
Ayt = {x : Sxyt ≥ 0}. I detail the match surplus computational algorithm in Appendix C.3.

Identifying the targeting parameters I first discuss how the targeting parameter γ0 is
identified, which governs how responsive targeting is to the match surplus, and nests random
search and directed search. I pin this parameter down by including moments that capture the
empirical sorting patterns, specifically the average match of low, mid, and high specification
capital in booms and also in busts (6 moments). Under random search γ0 = 0 sorting patterns
across rig types are entirely governed by acceptance sets; these acceptance sets are identified
using previous arguments. If γ0 > 0, then sorting can also occur within acceptance sets with
higher γ0 leading to stronger sorting. Therefore, γ0 can be identified by matching the empirical
sorting moments, after controlling for acceptance sets.

I include a moment for the average utilization in 2006 for high-specification rigs. This helps to
pin down the targeting parameter γ1: a model with γ1 = 0 is unable to fully match empirical
utilization rates in time periods following a boom like 2006 where the acceptance sets are con-
strained (due to a low number of available rigs) but the arrival rate of new projects is also low.
Higher values of γ1 allow for wells to avoid these matches, resulting in fewer rejections and a
higher capital utilization.
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Identifying the meeting technology parameters In Appendix B.5 I show that the mar-
ket tightness terms θyt can be identified given the above parameters. Then, the meeting
technology parameters ay — which relate how θyt affects the probability of capital matching
qcapital

y (θyt) = min{1 − exp(−ay/θyt), 1/θyt} — can be identified from the probability of match-
ing in a single period t. Therefore, I include moments related to the probability of matching:
the mean utilization of each capital type (3 moments).

Identifying potential project parameters More potential project draws Kt decrease the
market tightness θyt. Therefore, the potential project draw parameters k0 and k1 can be identi-
fied by matching variation in the probability of capital matching across periods. Hence, I include
moments for the covariance of utilization and the gas price for each capital type (3 moments),
and the variance of utilization for each capital type (3 moments).

The remaining parameters to identify relate to the distribution of potential wells fx. Given that
the rest of the model is identified, including acceptance sets and the targeting weights, fx can
now be identified by matching the distribution of observed matches. Therefore, I include the
variance of well complexity matches (1 moment), as well as the previously discussed moments
relating to the mean well-complexity matches for each rig type in booms and busts. I also
include the probability of observing a 2 month and 3 month contract (2 moments).

5 Results

Constructing the value of searching Uyt The results for the beliefs over the state tran-
sitions are (standard errors in brackets and recalling that the states are ordered as st =
[gt, nlow,t, nmid,t, nhigh,t]):

R0 =



0.81 (0.36)

6.95 (1.86)

4.62 (2.14)

7.02 (1.72)


, R1 =



0.88 (0.04) 0 0 0

−0.41 (0.15) 0.71 (0.08) 0.07 (0.09) −0.03 (0.08)

−0.34 (0.15) 0.2 (0.09) 0.48 (0.09) 0.21 (0.08)

−0.4 (0.15) −0.2 (0.07) 0.23 (0.08) 0.48 (0.08)


(16)

Also, the parameter σϵ = 1.15 (0.06). Since all the eigenvalues of R1 lie within the unit circle,
the transition matrix is stationary.
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Figure 6: The rig’s value of searching Uyt
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Figure 6 illustrates the outcome of the forward simulation procedure to obtain Uyt. The value
functions increase in booms and fall in busts which is consistent with there being more matching
opportunities when the gas price is high. The gray lines correspond to agents’ forecast of
the value of searching over the next 12 months - for example, EtUt+2(y) etc. The gray lines
indicate that agents have mean-reverting expectations about the value of searching, which is not
surprising because the state transitions are also mean reverting.

Value of a match parameters Table 5 contains the results for the value of a match. The
estimates for the m0,y terms imply that, for very simple wells, low-specification rigs generate
relatively higher match values. This occurs because - from the perspective of a well-owner drilling
a simple well - high-specification rigs are over-built, featuring complicated on-board technology
that is costly to monitor. Next, consider the estimates for m1,y; comparing these values by
rig type indicates that the match value is supermodular. Finally, I find that the value weight
m2 =3.7. Scaling up this per-day figure over a month implies that agents weight a $1 million
increase in this lease bid proxy to a $0.111 million increase in the total match value.

From these value of a match estimates, and estimates of capital’s value of searching, I can
construct acceptance sets. I plot the acceptance sets over time in Figure A-4 of Appendix D.
The way that these acceptance sets shrink in booms depends primarily on the sign of m1,y. While
the acceptance sets for low and high-specification rigs are intuitive, perhaps surprising is that
mid-specification rigs appear to accept all matches due to a low value of m1,mid. The implication
of mid-specification rigs accepting all wells is that their matches do not change substantially in
booms and busts; this is consistent with the empirical sorting patterns in Figure 4.

Demand and meeting technology parameters Table 5 contains the estimated parameters
from the simulated method of moments. Overall the parameters seem reasonable. The estimated
targeting parameter γ0 is 0.71. To get a sense of where this lies between random search and
directed search I consider the probability that a complex well (I set xcomplexity = 2.0) targets
its optimal match (which is a high-specification rig) at approximately the average state.15 In
the model this targeting probability is 0.34; under random search this number is 0.23 and under
directed search this number is 1.0. Therefore the search technology that best rationalizes the

15Specifically, I choose the state halfway through the sample at January 2005 which is also between a boom
and bust.
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Table 5: Estimated parameters

Variable Symbol Value Symbol Value

Match Value; Extension m0,low 88.4 m1,low -37.5

(74.2, 98.8) (−45.7, −29.3)

m0,mid 72.6 m1,mid 0.7

(56.8, 88.9) (0.4, 1.2)

m0,high 57.2 m1,high 40.5

(47.4, 67.9) (25.0, 56.6)

m2 3.7 η 0.38

(0.7, 10.1) (0.35, 0.4)

Demand µ 0.68 τ2 0.69

(0.52, 0.77) (0.65, 0.73)

σ 0.72 τ3 0.2

(0.57, 0.95) (0.17, 0.23)

ρ0 0.031 ρ1 0.037

(0.015, 0.047) (0.001, 0.073)

ρ2 -0.024 ρ3 0.0028

(−0.044, −0.004) (0.0003, 0.0053)

Entry Cost; Bargaining Parameter c $1.32 Million δ 0.37

n.a. n.a.

Potential Project Draws k0 22.9 k1 8.0

(11.1, 31.0) (6.1, 11.3)

Meeting Technology alow 0.44 amid 0.57

(0.31, 0.62) (0.41, 0.71)

ahigh 16.5

(8.02, 25.12)

Targeting Parameter γ0 0.71 γ1 1.43

(0.26, 1.11) (0.51, 2.25)

Note: All parameters are estimated using the simulated method of moments, except for estimates for
ρ0, ρ1, ρ2, ρ3 which are computed using the OLS regression of xquantity = ρ0+ρ1xcomplexity+ρ2x2

complexity+
ρ3x3

complexity. Confidence intervals (95%) in brackets. An n.a. term in the confidence interval denotes
a calibrated value. The confidence intervals are computed using 200 bootstrap replications, except for
estimates for ρ0, ρ1, ρ2, ρ3 which are computed using the standard errors from the OLS regression.
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data is closer to random search than directed search. In terms of the targeting parameter γ1 I
find that it is positive but relatively small.

For the matching efficiency parameters, the values of alow, amid indicate that matching in the
corresponding submarkets is not perfectly efficient. In contrast, the value of ahigh is quite
high and quite close to frictionless matching in the high-efficiency capital submarket. For the
remaining parameters (e.g. the mean and standard deviation of potential projects) it is difficult
to interpret them in isolation.

Model fit Table A-6 in Appendix D provides a complete comparison of how the simulated
moments fit the data. The model replicates the data well. I also provide out-of-sample fit
exercises in Appendix D.6.

6 Counterfactuals

I now use the model to perform three counterfactuals, which are designed to assess the efficiency
of capital reallocation over the boom-bust cycle as well as to assess potential policies to improve
matching. Two counterfactuals are centered around quantifying the economic forces at work in
the market. I first quantify the extent to which the sorting effect improves allocations. Second,
after accounting for the presence of the sorting effect, I then quantify the remaining misallocation
from search frictions. I do this through the lens of an intermediary, which is also interesting in its
own right due to the rise of e-procurement in the industry. Finally, given that an intermediary
which can greatly reduce search frictions may not be feasible, I instead keep the baseline search
technology and test a common policy response to business cycles: demand smoothing.

My measure of welfare is the total value of wells drilled minus entry costs. Denoting Y as the
set of capital in the market, and letting T = {2000 : 1, ..., 2009 : 12}, the total welfare is:

∑
t∈T

({
Total value of projects by Y at t

}
−
{

#projects entered at t
}

∗ c − OPEX

)

where OPEX is the total operating expenses of the rigs, which I set to be $32 thousand per
day per rig.16 I recompute the value functions in the counterfactuals where necessary, as well

16This figure comes from Kaiser and Snyder (2013), as the expenses for an operating Jackup rig in the US Gulf
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as agents’ beliefs about state transitions. I leave the computational details to Appendix C.

For each of the counterfactuals I decompose the total effect into three components:

• Quality effect: The change in the value of matches keeping the number of matched rigs
fixed in both the baseline and counterfactual.

• Quantity effect: The value of the new rigs that are matched in the counterfactual (or
the loss in value if more rigs are unmatched in the counterfactual).

• Entry cost saving: The change in the total entry cost in the counterfactual.

6.1 Quantifying the sorting effect

I first quantify how stronger sorting in booms increases welfare. Recall that the sorting effect
arises because the option value of searching increases in a boom compared to a bust, and
therefore agents are more selective in matching in booms than busts. Consequently, to quantify
the sorting effect, I simulate an equilibrium that shuts down the two channels by which agents
can be selective. First, I extend the acceptance sets to include all matches with positive match
value, which prevents agents from rejecting matches based on changes in the outside option.
Second, I set the targeting parameters γ0 = γ1 = 0 which shuts down the channel of agents
using the search technology to selectively avoid rigs with high outside options.

I simulate the model using the empirical natural gas price. Starting from the ‘no sorting effect’
counterfactual, I compute the change in welfare when moving to the market benchmark. I keep
the composition of searching wells the same in the ‘no sorting effect’ counterfactual as in the
market benchmark.

I plot the results in Figure 7. Panel (a) plots the total change in welfare (joint profits). Welfare
with the sorting effect is greater in every period and the total increase is 12.0%. The effect is
cyclical: the welfare increase in a boom is 7.3% compared to around 4.7% in a bust. Panels
(b) and (c) decompose how the sorting effect increases welfare: there are less matches (which
by itself decreases welfare by -8.2%), but the remaining matches are of higher quality because

of Mexico 2010-2011 as reported in the Hercules Offshore annual report. Hercules Offshore is a firm that owns
and leases out drilling rigs. Operating expenses include, for example, routine rig maintenance.
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Figure 7: No sorting counterfactual results
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(c) Summary of changes

Boom Bust Average

Quality Effect 15.4% 4.8% 20.2%

Quantity Effect -8.1% -0.1% -8.2%

Entry Effect 0.0% 0.0% 0.0%

Total 7.3% 4.7% 12.0%

Note: This figure shows the change in welfare when moving from the ‘no sorting’ counterfactual to the
market baseline. I keep the composition of searching wells fixed to the market benchmark resulting in an
entry effect = 0. The welfare in dollars at the market baseline is 5.0 billion.

agents are more selective (which increases welfare by 20.2%). Overall, the match quality effect
dominates, which results in a net increase in welfare.

6.2 An intermediary that reduces search frictions

Next, I study the potential gains from an intermediary. I need to take a stand on the exact
nature of the intermediary in the marketplace. In summary, I use a ‘greedy matching algorithm’
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Figure 8: Intermediary counterfactual results
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(c) Summary of changes

Boom Bust Average

Quality Effect 23.2% 17.9% 41.1%

Quantity Effect 5.2% 4.7% 9.9%

Entry Effect 0.0% 0.0% 0.0%

Total 28.4% 22.6% 51.0%

Note: This figure shows the change in welfare when moving from the market baseline to the intermediary
counterfactual. I keep the composition of searching wells fixed to the market benchmark resulting in an
entry effect = 0. The welfare in dollars at the market baseline is 5.0 billion.

which matches the set of entered wells to a submarket of available rig types in each period.
The algorithm is ‘greedy’ because it only considers the static match value when choosing which
submarket to match each well to. One may ask about the extent to which including dynamic
considerations could improve allocations, especially in light of the sorting effect. However, the
sorting effect arises due to search frictions, and in this counterfactual these frictions are greatly
reduced which blunts the incentives to wait for a better match. In addition, the matching
protocol is relatively simple and so could be feasibly implemented by a real-world intermediary.

Conceptually, this intermediary can be thought of as an ‘Uber for rigs’ which introduces a vast
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improvement in the search technology of the industry. To facilitate a comparison with the sorting
effect counterfactual, I also keep the composition of searching wells fixed. I leave details on the
implementation algorithm to Appendix C.7. Figure 8 illustrates the change in welfare due to
an intermediary. Panel (a) shows that the intermediary increases welfare by around 51.0% over
2000-2009. (Note that here I am using the intermediary as the comparison, so these figures are
the change in welfare relative to the total surplus of an intermediary.) This increase in welfare
is slightly cyclical: according to Panel (c) the welfare increase in booms is around 28.4% versus
22.6% in busts.

Panel (b) decomposes the effect of the intermediary. Overall, match quality is higher in all
periods and the total improvement in match quality is 41.1%. The magnitude of the quality effect
is slightly cyclical, with the gains in the boom 23.2%, which is higher than the gains in the bust
at 17.9%. The quantity of matches increases in both booms and busts under an intermediary,
however the magnitude of the quantity effect (9.9%) is much lower than the magnitude of the
quality effect.

Given the gains from an intermediary, it might seem surprising that there is not currently one
in the market. Attempting to explain the non-existence of an intermediary is arguably outside
the scope of this paper. That said, as previously mentioned, participants in the industry are
attempting to reduce search frictions through recent advances in technology and e-procurement.

6.3 Effects of a demand smoothing policy

I now consider the effects of a demand smoothing policy. There is a long history in the oil and
gas industry of policies designed to smooth out the disruptive effects of the boom-bust cycle.
Between 1954 and 1978 natural gas producer prices were fixed in the United States for interstate
trade. Today, many producer incentives, tax credits and royalty rates are tied to oil and gas
prices. For example, the Federal Marginal Well Tax Credit is only available when the oil prices
is below $18 per barrel. The Federal Enhanced Oil Recovery Credit is only available if oil prices
are below $28 per barrel.17 The consequence of these counter-cyclical policies is to ‘smooth’ out
the prices that producers face, increasing oil and gas prices in the bust and decreasing them in
the booms.

17Potter et al. (2017) summarizes the tax credits oil and gas producers receive in low-price environments.
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Figure 9: Demand smoothing counterfactual results

2000 2005 2010
Year

−100

−50

0

50

100

C
ha

ng
e

in
W

el
fa

re
(%

)

(a) Total Change

Gas Price ($)
Total effect

0

5

10

15

N
at

ur
al

G
as

Pr
ic

e
($

)

2000 2005 2010
Year

−150

−75

0

75

150

C
ha

ng
e

in
W

el
fa

re
(%

)

(b) Decomposition

Gas Price ($)
Entry effect
Quality effect
Quantity effect

0

5

10

15

N
at

ur
al

G
as

Pr
ic

e
($

)

(c) Summary of changes

Boom Bust Average

Quality Effect -10.2% -2.4% -12.6%

Quantity Effect -2.4% 30.5% 28.1%

Entry Effect 10.4% -11.0% -0.6%

Total -2.1% 17.0% 14.9%

Note: This figure shows the change in welfare when moving from the market baseline to the demand
smoothing counterfactual. The welfare in dollars at the market baseline is 5.0 billion. The entry effect
corresponds to the total change in entry costs and so will be negative when there is more entry.

To understand the effects of these policies on drilling behavior I consider a counterfactual demand
smoothing policy that results in the natural gas price being held at its long-run average. I am
agnostic in the counterfactual about the exact implementation of taxes and subsidies that result
in the smoother gas price. The results are depicted in Figure 9. Panel (a) shows that the
smoothing policy results in large shifts in drilling activity. The shift is somewhat cyclical, with
a slight decrease in welfare in the boom (-2.1%) versus an increase in the bust (17.0%).

Panel (b) illustrates the determinants of the total change. The changes for the quantity effect and
the entry effect are straightforward. In terms of the quality effect, demand smoothing decreases
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the quality of matches in a boom by -10.2% since agents are less selective. Interestingly, match
quality also decreases slightly by -2.4% in the bust: one reason is that demand smoothing results
in different compositions of wells entering in these periods.

Given the counterfactual demand smoothing policy is extreme - and despite dramatic changes
in entry and the quantity of matches - the overall effect of the smoothing policy is modest at
14.9%. This suggests that demand smoothing policies are somewhat ineffective in improving
welfare. Collard-Wexler (2013) finds qualitatively similar results for demand smoothing in the
ready-to-mix concrete industry: smoothing results in large changes in industry structure, but
a small improvement in welfare. Although the market structure of the ready-to-mix concrete
industry differs from offshore drilling, these results suggest that understanding the industry
structure is important for predicting the effects of demand smoothing policies.

7 Conclusion

A large literature has established that firms adjust to booms and busts by reallocating capital
and that this process drives aggregate productivity. But much less is known about how firms
reallocate capital in practice. Research in this area is needed because the effects of commonly
proposed policies such as demand smoothing hinge on the reallocation mechanism.

In this paper I shed light on one such mechanism: matching. I develop a new framework that
combines elements of the sequential search literature and firm dynamics literature. The frame-
work incorporates two-sided vertical heterogeneity leading to sorting, and a more flexible search
technology. I apply the framework to a novel contract dataset in the market for offshore drilling
rigs. I argue that booms are associated with a sorting effect and I provide an identification
strategy to separate the sorting effect from changes in the composition of searching projects (de-
mand). I use the framework to quantify the sorting effect, as well as the value of an intermediary
and the effects of a demand-smoothing policy.

Overall this paper presents a unique picture of the inner workings of a decentralized capital
market that is affected by booms and busts. My results show that matching is an important
reallocation channel in booms and busts for capital markets, and that this has significant impli-
cations for policy design.
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