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Abstract

We investigate how endogenous rigidities inhibit physical capital reallocation. We focus
on the role of contract duration - a classic example of an adjustment rigidity. We argue
when agents sign longer contracts in booms when markets are thin, they generate a
contracting externality which further amplifies thinness and impedes the adjustment of
markets to shocks. We develop a framework with booms and busts where agents search
and choose match duration. Applying the framework to the containership leasing market,
we find substantial misallocation from endogenous rigidities, particularly in the transition

after a crash. We also quantify implications for designing industrial policy.
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1 Introduction

Physical capital reallocation between firms is a central channel by which the aggregate
economy adjusts to booms and busts.! For many forms of physical capital — like ships,
drilling rigs, heavy equipment, and aircraft — capital reallocation occurs in decentralized
leasing markets where agents need to search for and match with trading partners. As a result,
adjustment rigidities and frictions in these markets may be a cause of misallocation across the
business cycle. However, due to limited data, less is known about the exact process of capital

reallocation in specific settings.

In this paper we focus on rigidities in the form of fixed-term contracts in these leasing markets,
which prevent immediate reallocation of capital to its optimal use after a shock. We explore
the mechanism that contract duration is an endogenous choice and is determined by a tradeoff
between the cost of lock-in to a bad match (which favors a shorter contract) versus search
frictions if the match needs to be renewed (which favors a longer contract). In booms, as asset
markets become thinner and it becomes more difficult to find a match in the search process,
contracts may get longer. This then results in a contracting externality where even fewer assets

are available and equilibrium contracts are too long in booms, which leads to misallocation.?

Our main research question is: what are the implications of endogenous rigidities for capital
misallocation as well as policy? Focusing on the leased containership market — an excellent
example of a decentralized market with fluctuations that is also important in its own right in

the supply chain — we answer this question in three steps.

First, we construct a novel dataset of firm-to-firm contracts and information about the

underlying capital allocations, and use these data to show descriptive evidence consistent with

'For example, although the aggregate data typically do not contain information on capital leasing markets (the
focus of this paper), Eisfeldt and Rampini (2006) document that reallocation through sales of physical capital
alone accounts for one quarter of total investment, and is pro-cyclical.

Note that, as we discuss further later, whether a longer duration is inefficient in booms is ultimately an empirical
question. For example, how firms need to allocate their physical capital could systematically change in a way
that favors a longer duration in booms.



our main mechanism.> Second, based on this evidence, we develop a new empirical dynamic
matching framework with booms and busts where agents choose for how long to match.
Third, using the framework, we quantify (i) the extent of misallocation from the contracting
externality (i1) implications for the significant resources devoted to industrial policy in this

setting.

The majority of world trade in goods takes place via containerships and about half of these
ships are rented under fixed-term contracts (UNCTAD, 2018). In this market charterers (such
as ‘COSCO’) need to lease physical capital — the containerships — from shipowners (such
as ‘Seaspan’). The leasing market is decentralized and several features point to the presence
of search frictions: the fact that the market is fragmented on both sides, the widespread use
of brokers, and the emergence of e-procurement. Charterers who lease ships allocate them
to fixed scheduled routes and transact with downstream exporters for container slots on their

routes. Demand in the industry is cyclical, reflecting the global business cycle.

Shipowners and charterers use time-charter contracts, which involve a negotiated ‘day-
rate’ for a given duration. Charterers are specialized in their relationships with downstream
exporters, and so face idiosyncratic demand shocks which create opportunities for reallocation
(especially following aggregate fluctuations). However, contract lock-in as well as search

frictions impede reallocation.

We assemble a dataset of contracts and port calls from 2005-2015.4 Using these data we show
four key facts. First, we show that contract duration is pro-cyclical. This causes a substantial
contract overhang after a crash, with charterers and ships locked into matches formed years
previously in the boom. As well, we document that pro-cyclical contract duration is a feature

across other physical capital markets where contract data are available, including drilling rigs,

3Unlike many firm-to-firm markets where individual contracts and other key data are often confidential (which
has limited research progress), in our setting we have a rich dataset of contracts and allocations, including the
exact location and amount of cargo that each ship is carrying.

4The year 2005 is the first time that systematic satellite data are available on ship positions, while after 2015
there was consolidation of the industry into alliances; during the 2005-2015 period the global market was
unconcentrated on both sides. Furthermore, in this period we observe fluctuations in market conditions.



bulk shipping, and (anecdotally) aircraft.

Second, we show evidence consistent with this contract overhang preventing reallocation
and generating misallocation in the containership leasing market. In our data we see
observationally equivalent ships carrying systematically different amounts of cargo —
measured both in volume and value — within a time period. This systematic dispersion in
ship utilization suggests misallocation i.e. there are unexploited gains to reallocating ships to
different firms.> We then document the role of contract rigidities in inhibiting efficient capital
reallocation. Specifically, reallocations — defined as a ship moving to a new schedule where
it is better utilized — tend to occur when a ship starts a new contract. The dispersion jumps
significantly in the 2008-2010 crash and transition, when the contract overhang is highest.
Furthermore, the rise in dispersion in this period is largely concentrated among matches under

longer contracts.

Third, we show that the dispersion is not driven by regional shocks, which motivates our
choice to model the industry as a global market. Finally, we show that contract duration

responds to market thinness in the cross-section.

Based on the descriptive evidence, we estimate a model of the market. The model is dynamic
and charterers need to search and match with ship-owners. Charterers enter the market with a
state-dependent valuation of a match, as well as a state-dependent probability that their value
of a match will expire (i.e., fall to zero) in each period. During booms there is a higher entry
rate of charterers. Matching is subject to search frictions that depend on the thickness of the

market.

Upon meeting, agents choose a contract length to maximize the total surplus of a match, given
their types and the aggregate demand state. Longer contracts avoid agents having to search
again (and risk not being matched), but may cause lock-in if the match value expires before

the end of the contract. After matching, the ship and charterer are removed from the market

5As we discuss in our counterfactuals, however, we need to estimate a model to say so conclusively because
some dispersion may be consistent with (constrained) efficient contracts in the presence of search frictions.
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for the duration of the contract. Contracts generate externalities since the contract durations

chosen by agents shape the thickness of the market in future periods.

We estimate the model in two steps. In the first step we estimate demand for shipping
services in order to recover the demand process. In the second step we use simulated
method of moments to estimate the structural parameters. The large state space (which
includes the distribution of all matches under contract) in the second step results in a curse of
dimensionality. We solve this by using a solution concept similar to a Moment-Based Markov
Equilibrium (Ifrach and Weintraub, 2017). A key empirical challenge here that we overcome
is disentangling time-varying match-specific factors that drive agents to sign longer contracts

from market thinness considerations.

We use the estimated model to perform two sets of counterfactuals. First, we quantify
misallocation in the decentralized equilibrium. We solve for a constrained social planner who
can set the optimal contract length for the entire market in each period to maximize the joint
profits of the firms. Our social planner is still subject to search frictions and cannot predict

the exact future realizations of the demand process.

We find that, in booms, the planner would prefer to thicken the market with a shorter contract
length than we see in the data. The planner’s tradeoff is similar to the individual-optimal
contract, except they also internalize the contracting externality. Intuitively, a shorter contract
generates a negative ‘quantity effect” where it reduces the total number of matches. Here,
agents search more and risk being unmatched. On the other hand, a shorter contract also
generates a positive ‘quality effect’ that reduces lock-in to bad matches. During a boom,
when there are many available charterers, the risk of a ship being unmatched is low. As such,
the optimal contract length is actually counter-cyclical, in stark contrast to the decentralized

equilibrium.®

Overall, misallocation due to the contracting externality is 5.6% on average, measured in lost

®Note that this is ultimately an empirical question, since we also allow for time-varying match-specific factors
that could cause the optimal contract length to increase in booms.



joint profits to the firms. This average number masks substantial changes over the cycle.
Misallocation rises in a boom and is highest (over 10%) at the start of the 2008 crash as the
market transitions from a boom to a bust, but agents are locked in to long contracts. In other
words, the supply chain rigidities that result from the observed long contract overhang in

booms are also inefficient.

We also simulate an intermediary who can eliminate search frictions. We find that the
intermediary would induce agents to sign much shorter contracts, illustrating that search

frictions play a key role in exacerbating the contracting externality.

In the second set of counterfactuals we consider implications for the design of industrial policy,
given the billions of dollars spent on subsidies (in the EU alone) in this industry. These
subsidies target both costs typically borne by shipowners (e.g. subsidizing crew wages), and
costs typically borne by charterers (e.g. fuel costs). In the presence of exogenous rigidities,

the pass-through of these subsidies to industry profits is complete.

With endogenous rigidities, however, we find that subsidies induce agents to sign longer
contracts, which increases equilibrium market thinness. This worsens the inefficiency from the
contracting externality, and reduces the pass-through of subsidies. Overall, counter-cyclical
subsidies would be substantially more effective than a constant subsidy, since during the bust

the contracting externality is lower.

1.1 Related literature and contributions

This paper is related to several strands of literature. The first is about the inner workings of
decentralized asset markets. Some of these papers highlight the role of search frictions and
market thinness in determining efficient allocations (e.g., Gavazza (2011a), Gavazza (2011b),
Gavazza (2016)). Other papers study how capital reallocation determines efficient allocations
(e.g., Lanteri and Rampini (2023), and Vreugdenhil (2023)); and the role of adjustment costs
in capital reallocation more generally (e.g., Asker et al. (2014)). Our main contribution here

is that we are the first (to our knowledge) to shed light on the role of equilibrium contract



duration in causing capital misallocation.

The second strand is the literature that investigates the empirical determinants and effects
of contractual form (e.g., Hubbard (2001), MacKay (2022), Darmouni et al. (2024)). Our
paper aims to understand the complete equilibrium effect of contract duration, which operates
through a contracting externality, whereas this literature has primarily focused on partial

equilibrium analyses.

There are two main exceptions which consider the broader equilibrium effects of
organizational form. First, Harris and Nguyen (2024) explore how long-term relationships in
the trucking industry increase spot market frictions. Our results are complementary, but the
economics of our paper are different. Concretely, unlike relationships — where there is no
commitment — we focus on the choice of contract duration with two-sided commitment in
booms and busts. With commitment, long contracts formed in a boom can persist well into a
bust, inhibiting reallocation when one party is locked in to the match. The second exception
is Zahur (2024), which incorporates contracting externalities in a downstream spot market
and studies the role of contracts in mitigating under-investment. The focus of our paper is
different: we study a cyclical decentralized market with search frictions, and quantify how

the choice of contract duration causes misallocation in booms and busts.

More broadly, models of contract duration in search and matching frameworks in labor
economics consider settings where there is one-sided commitment, since employees cannot
be forced to work.” Physical capital markets involve agreements between two firms, and
so can operate quite differently with two-sided commitment and explicit agreements over

duration.

Third, this paper is related to the literature in industrial organization that studies search-
and-matching markets, particularly in the transportation sector. Recent examples include

Fréchette et al. (2019), Brancaccio et al. (2020), Buchholz (2021), Gaineddenova (2022),

"Therefore, contracts must be carefully designed to retain workers with one-sided commitment in mind e.g.
(Balke and Lamadon, 2022).



Castillo (2023), Yang (2024), Rosaia (2024), and Brancaccio et al. (2023). Many of these
papers are centered on markets like taxis or bulk shipping, where a match typically involves
a single trip of a specific duration. By contrast, in markets such as air transport or container
shipping, matches last longer, and so agents use fixed-term contracts. In these markets, the
choice of match duration — which is the central choice of agents in our framework — is first-

order.

Finally, the paper extends the literature that studies shipping markets. These papers include
Kalouptsidi (2014), Kalouptsidi (2018), Jeon (2022), Ganapati et al. (2024), Brancaccio et al.
(2024), among others. Our paper incorporates key institutional details of these markets (like
search frictions), but our focus is quite different in that we study trade in the fixed-term leasing

market in booms and busts.

2 Container shipping industry

Our analysis focuses on the global container shipping industry. Containerships can be
thought of as the ‘buses of the ocean’, typically operating on fixed schedules where they pass
through a designated set of ports.® At each port a ship drops off and picks up a portion of its
containerized cargo. Figure la presents a map with the route for one of the containerships in

our sample.

The value chain of the maritime shipping industry can be visualized in Figure 1b. Cargo
owners (or exporters) are the enterprises that use maritime transport providers and other
suppliers of services to import/export their cargo. Containerships are operated by carriers
(also known as liner companies) that specialize in the transport of containerized goods across
the world (for example, COSCO). Carriers compete by setting up shipping schedules along a

series of ports.

About half the containerships in the world are owned by the carriers themselves; these “owner-

operated ships" are rarely leased out to other companies, and form the core of the fleet of

8This is in contrast to the dry bulk shipping industry, where ships operate more like taxi cabs and make voyage
decisions on a trip-by-trip basis, often travelling in “ballast" without any cargo at all (Brancaccio et al., 2020).



Figure 1: Container Shipping Industry Structure
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Note: Panel (a): This shows a geographical map of a ship in our data performing its scheduled stops. Here, the
ship has the following schedule: Antwerp - Bremerhaven - Muuga - Helsinki - Kotka - Antwerp. Note that the
ship uses the Kiel canal through Denmark. Panel (b): One component not pictured (but mentioned in the text) is
that charterers can also own ships. These ships are not available on the leasing market, but can be allocated to
the fixed schedules downstream.

carriers. The remaining “charter-operated ships" are owned by shipping companies (who
we refer to as “shipowners") that do not themselves provide container shipping services, but
instead specialize in leasing out these ships to the carriers (or “charterers"). It is this leasing

market that we focus on.

Since containerships are a highly movable form of capital, practitioners treat the leasing
market as a global market. Demand shocks that originate in one region result in increased
demand for ships in all parts of the world.” Consistent with this, prices of new leasing contracts

are highly correlated across regions (Appendix Figure C.4).

The market is unconcentrated and fragmented, with a large number of agents searching on

both sides of the market.!® In our study period 2005-2015, the HHI is 415 for charterers, and

For example, in response to the Red Sea crisis in late 2023, a shipbroker reported that “vessels across all sizes
and regions [are] seeing increased interest." (Miller, 2024).
10This is contrast to downstream container shipping markets, which are regionally segmented and therefore more
concentrated. In these markets, carriers are able to exercise significant market power when transacting with
exporting firms, as shown by Hummels et al. (2009) and Ardelean and Lugovskyy (2023).
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136 for ship-owners who lease out their ships. Note that since 2015 — outside the period
of our study — many charterers have consolidated into alliances. So, in order to focus on a
period during which the market structure was relatively constant, we limit the scope of our

analysis to the pre-2015 period.!!

2.1 Leasing contracts

Shipowners lease to charterers using time-charter contracts. These contracts are relatively
simple and follow a standard template called ‘Boxtime 2004’ (BIMCO, 2004). In this
template, each contract specifies a ‘dayrate’ (the price per day to lease the ship that the
charterer pays the shipowner) for a specified duration. Shipowners pay the operating costs of
the vessel (i.e. the crew, maintenance and repair), while charterers pay voyage expenses (i.e.
bunker fuel, port charges, canal dues, and cargo-handling costs). Note that contracts do not

restrict the routes to which charterers can allocate the ship.

Subleasing is rare In theory charterers can sublet leased ships to other carriers. In practice
subleases are rare and account for only 2.1% of all contracts (Appendix A.7). Three
institutional factors suggest why subleasing is not widely used. First, the point in the cycle
where charterers would most like to sublease the ship — when a boom transitions to a bust
and they are locked into a match — is exactly the point where other charterers do not need
a ship. Second, even if the market is currently in a boom, charterers are generally unwilling
to sublease to their competitors in downstream shipping market (see, for example, (Wackett,
2021)). Third, subleasing requires charterers to operate on the other side of the leasing

market, with which they may not be experienced.

Extensions Contracts can be extended. However, contracts typically do not have explicit
options for extensions: only 3.3% of contracts provide charterers a formal option to renew
(Appendix A.7). Instead, these extensions are negotiated on an individual basis by the

charterer and the owner if the ship does not have a subsequent contract. Similarly, contracts

"'There did exist alliances in the 2005-2015 period, but these were small. Re-computing the HHI for the
charterers based on alliances only increases the index to 611 from 415. As a result, we abstract away from
these alliances or market power considerations in our analysis.

10



almost always do not include clauses for re-negotiation; re-negotiations of the contract (such
as an early termination) must be agreed to by both the shipowner and charterer, and are

reportedly rare.!?

2.2 Reallocations

There are two types of reallocation in this industry. The first is the reallocation of a ship
between different charterers, which occurs across contracts. The second is the physical
reallocation of a ship to different routes, which, in theory, could happen within or across
contracts. However, as we later show in Section 4.2, the physical reallocation of a ship often
coincides with a contractual reallocation. This is not surprising since charterers typically

follow fixed shipping itineraries that they only infrequently adjust (Stopford, 2009).

What generates profitable opportunities for reallocation? The primary reason is that charterers
have heterogeneous relationships with downstream exporters (Ardelean and Lugovskyy,
2023). This differentiation exposes charterers to idiosyncratic shocks. As a result, reallocation
is valuable when a ship moves from a charterer with a bad shock who no longer needs a ship,
to a charterer who does need a ship. Reallocating a ship usually incurs an adjustment cost in

the form of lost time as the ship moves to its new schedule.

2.3 Search frictions

Three features point to significant search frictions in the containership leasing market.'> The
first is the presence of specialized ship brokers. Since the market is fragmented with a large
number of agents searching on both sides, these brokers undertake matching on behalf of
their shipowner and charterer clients. Common brokers are Bertling, Clarksons, and Maersk

Broker.

A second feature is that the matching process is unstructured — that is, there is no centralized

12We are only aware of a handful of cases of early termination by mutual consent where the charterer was faced
with financial difficulties: see Miller (2023).

13Similar details have been documented as evidence for search frictions in other markets for maritime vessels
like bulk shipping (Brancaccio et al., 2020), and oil and gas rigs (Vreugdenhil, 2023).
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platform — leading to instances where matches do not form despite searching agents on both
sides of the market. Information about available ships and searching charterers is usually
shared via e-mail and brokers receive large number of e-mails each day.!* As one manager
in the industry observed: “Many shipping companies face e-mail overload - literally hundreds
or thousands of e-mails each day. Failing to catch key operational information or an urgent

e-mail from a broker can have a toll on a business" (The Maritime Executive, 2014).

Finally, since the end of our study period in 2015, there have been attempts to use technology
to improve matching. Concretely, participants have begun to create online centralized
platforms (sometimes marketed as an ‘Uber for ships’) to better connect available ships
and charterers.!> The entry and adoption of these platforms suggests inefficiencies in the

matching process in the study period.

3 Data

We use two main data sources. The first is data on containership time-charter contracts
from Clarkson’s. We provide more details about the dataset construction, and how we merge
contracts with shipping movement data, in Appendix A.1. Our full dataset covers the period

from 1999 to 2023.

The other key dataset we utilize in our analysis is port call data from 2005-2015 provided by
Lloyd’s List Intelligence. This dataset contains the universe of port calls, including the dates
of arrival and sailing, and the locations of the ports visited on each call. For a subset of port
calls, we also observe the ship’s “draft”: the vertical distance between the waterline and the
bottom of the hull. A ship that is carrying more cargo will sink deeper into the water, causing
its draft to increase; we therefore use draft data to infer how much cargo the ship is carrying

and measure capacity utilization (see Appendix A.2).

Our dataset includes a total of 1,655,140 port calls, with 299,903 of them matched with

14This is not unique to the container shipping leasing market: Brancaccio et al. (2023) discuss how brokers in
the dry bulk industry report receiving many thousands of emails every day.
15See Smith (2019) for a description of these platforms and the connection with Uber’s marketplace.
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contract data. In addition, as a proxy for aggregate demand, we use the container-ship time-
charter rate index, a monthly index published by Clarksons based on their assessments of the
rates of newly negotiated time-charters. Table 1 provides descriptive statistics on the duration
of the contracts, dayrates (contract price), age of the ships contracted, and capacity utilization

in 2005 - 2015 (which is the period we focus on in our analysis).

Table 1: Summary statistics for the dataset, 2005-2015

Variable Obs Mean Std. dev. Min Max
Panel A: Contract-level variables

Duration (months) 2,826 7.6 7.0 0.2 84.0
Dayrate ($/day) 2,823 9,027 4,761 2,799 33,000
Ship age (years) 2,826 9.2 55 1 29.0
Panel B: Port-call variables

Capacity utilization 872,069  0.55 0.22 0 1
Reallocation 1,655,140 0.02 0.14 0

Panel C: Aggregate variables

Time-charter rate index 132 72.3 37.0 32.0 171.8

Note: Panel A reports summary statistics for the contract data, where each observation is a leasing contract.
Panel B reports port call summary statistics, where each observation is a single port call for a ship. We measure
capacity utilization only for the subset of port calls that report the ship’s draft. Finally, Panel C reports summary
statistics for the time-charter index, where each observation is an year-month.

3.1 Reallocations

We use the port call data to identify when a ship reallocates from one itinerary to another.
This is challenging since we do not directly observe shipping itineraries in our raw data.
Instead, what we observe are repeated sequences of port calls. We identify reallocations as
large deviations across space from old port call sequences to a new set of port call sequences

(where we use a threshold of 1000 km to define large deviations).

We describe the algorithm for detecting reallocations in Appendix A.4. The threshold of 1000
km is not especially restrictive as ships are often moved across large geographical distances.
The average distance when a ship is reallocated is 3100 km, and 25% of reallocations involve

a transit of more than 4000 km from the original to the new itinerary.
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3.2 Dispersion in capacity utilization and misallocation

We provide evidence consistent with misallocation by considering cross-sectional dispersion
in capacity utilization for observationally equivalent ships. If a ship leased to charterer A is
systematically under-utilized compared to an otherwise equivalent ship leased to a different
charterer B, this is arguably indicative of misallocation - industry output would increase if the
first ship were reallocated from charterer A to B. This is similar to the way that practitioners

view fleet efficiency in the industry e.g., Adland et al. (2018) and UNCTAD (2010).

We address three issues to operationalize this argument empirically. First, due to cargo
imbalances, the amount of cargo a ship is carrying may differ across port calls depending
on which direction of the route the ship is traveling on and which port it is visiting.'® This is
known as the ‘round trip effect’ (Wong, 2022). To address this issue, we aggregate utilization
to the ship-month level: while a ship’s utilization on a given port call may vary due to cargo
imbalances, these cargo imbalances average out when we aggregate over a sufficiently high
number of port calls.!” Furthermore, the allocation decision for charterers is really about
which sequence of port calls to allocate a ship to, rather than an individual trip, and our more

aggregated measure reflects this choice.

Second, ships may differ in capacity utilization due to underlying characteristics such as size
and fuel efficiency. Therefore, we residualize the capacity utilization of each ship by ship
fixed effects. Third, capacity utilization varies over time with aggregate demand. As a result,
we compute the cross-sectional standard deviation of residualized capacity utilization in each
month. This nets out the effect of any time-varying changes in the aggregate demand. As
such, dispersion within a time period in this measure indicates that there are more productive

matches available, but ships are not matched to them, which is consistent with misallocation.

16For instance, on the Trans-Pacific trade route, there is typically considerably more demand when ships are
traveling from Asia to North America than in the reverse direction.

17 As a robustness check, we also aggregate utilization to the ship-quarter level: over a three-month period, almost
every ship will have completed at least one round-trip. Results using this measure are very similar.
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Revenue dispersion We also obtain a revenue-based measure of dispersion in utilization
because downstream exporter prices may be heterogeneous across routes. Therefore, in theory,
it may be efficient to deploy ships on routes where these prices are high, regardless of physical
utilization. To construct our measure we multiply residualized capacity utilization by the
freight rate of the itinerary the ship is currently operating on (Appendix Section A.5 provides
more details). We then measure dispersion in the revenue across ships within the same time
period. As we discuss further in Section 4.2, our results are similar regardless of whether we

use physical or revenue-based dispersion in residualized capacity utilization.

Interpretation as misallocation Although dispersion in utilization for observationally
equivalent ships is suggestive of misallocation, note that later we also consider other
explanations for this dispersion that would be consistent with an efficient market. For
example, in Section 4 we consider whether dispersion is driven by regional shocks and
there are high adjustment costs to reallocating ships, as well as other robustness checks.
Furthermore, since our framework in Section 5 allows for adjustment costs and search
frictions, it is an empirical question about whether longer contracts that generate dispersion
are optimal. Based on this idea we quantify the degree of “inefficient” dispersion later in the

counterfactuals in Section 8.

4 Descriptive evidence

We describe four key empirical observations that underlie our analysis.

4.1 Observation 1: New contract duration increases in booms, leading
to substantial contract overhang after a market crash.

Figure 2 shows how the average duration of newly signed leasing contracts changes over
time. In the same figure, we also plot the containership ‘timecharter rate index’, which is a
measure used within the industry to index whether the market is in a boom or a bust.!® The

market is highly cyclical and firms sign significantly longer contracts during booms. This

8Note that later in the model we directly estimate the demand process rather than use the price index.

15



Figure 2: Average duration over the cycle: new vs existing contracts
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effect is especially pronounced during the boom in the mid-2000s, when the average duration
of newly signed contracts increases from 8 months to more than 24 months. Furthermore,
the correlation in Figure 2 is not driven by long contracts having systematically higher prices
(Appendix Table A.1), nor by a few unusually long contracts, since we see the same pattern if

we plot the median contract duration over time (Appendix Figure C.1).

Figure 2 also plots the duration of all existing contracts at each time period. This illustrates
the long-run effects of a boom when there is pro-cyclical contract duration. Concretely, the
boom causes an overhang of existing contracts (and the corresponding matches) that persists
for years after the market crashes. The difference between new versus existing contracts is
most pronounced during the “Great Trade Collapse" of 2008 - 2010. We discuss below how

this contract overhang affected the reallocation of physical capital in the market.

4.1.1 Alternative explanations for pro-cyclical contract duration

Insurance motives Firms may prefer longer lease contracts to manage risk. Longer contracts

guard against the risk of not being able to find another match upon contract expiry, which
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is a core mechanism that we focus on and explicitly model. In addition, longer contracts
may also be used to hedge against price risk, a channel not present in our model, since we
assume risk-neutral firms. We make this assumption since shipping firms have ready access
to financial derivatives (such as forward freight agreements) for price risk mitigation (Adland
et al., 2020). Furthermore, if hedging against price risks were a central driver of pro-cyclical
duration, we would expect prices of longer contracts to be less cyclical (and less volatile) than
prices of shorter contracts; as Appendix Figure C.3 shows, however, the prices of long and

short contracts are similarly pro-cyclical.

Obtaining finance for new ships Some shipowners sign long-term leasing contracts with
charterers when they acquire new ships, since the guaranteed contract revenue allows them to
obtain external finance at a cheaper cost.!” This suggests a potential alternative explanation
for pro-cyclical contract duration: during booms, demand for new ships rises, and lease
contracts lengthen to facilitate financing. We find, however, that the pro-cyclical lengthening
of contracts is of the same magnitude even if we control for ship age or drop new ships
(Appendix Table A.1). This is because the vast majority of our contracts are for existing ships;
only 6.2% of leasing contracts are for brand-new ships, and we drop all these observations

from the estimation sample (as we discuss later).

4.1.2 Evidence for pro-cyclical contract duration in other physical capital markets

In Figure 3 we document that pro-cyclical contract duration is a feature over a wider range
of physical capital markets than just our primary setting of containerships. We choose
these markets because they have systematic time-series data on contracts (which are usually
confidential in firm-to-firm markets) and because they are important markets in their own
right. In Appendix A.8 we also provide anecdotal evidence from other markets (e.g. aircraft),

as well as more information about data sources and details for this Figure.
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Figure 3: Contract duration over the business cycle for other physical capital markets
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Note: See Appendix A.8 for data sources and more details. In the left-hand-side panel, the ‘Baltic Dry Index’ is
the most commonly used shipping freight rate index for bulk shipping and is indicative of whether the market is in
a boom or bust. In the right-hand-side panel, the natural gas price is a commonly-used indicator for the business
cycle in the market for offshore shallow-water drilling rigs, with higher prices corresponding to a ‘boom’.

Figure 4: Evidence consistent with contract overhang inhibiting reallocation
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Note: Panel (a): Plots dispersion in residualized utilization across containerships every month, where
residualized utilization is obtained by regressing utilization on ship fixed effects and a time trend. Panel (b):
The figure plots the share of containerships reallocated every month in a 4 year window around the month when
the ship was reallocated, after controlling for ship fixed effects and a time trend.
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Table 2: Dispersion in Utilization Rises Following the Bust

Panel A: Dispersion in Utilization, All Ships

Baseline Control for Route-by-Time
(1) (2) 3) “4)
S.d., utilization S.d., revenue S.d., utilization S.d., revenue
Great Trade Collapse 1.497 1.184 1.600 0.946
(July 2008 - End-2010) (0.248) (0.496) (0.248) (0.495)
N 120 120 120 120
R-squared 0.522 0.293 0.501 0.263

Panel B: Dispersion in Utilization: Between and Within Charterer

Between Charterer Within Charterer
(D (2) (3) 4)
S.d., utilization S.d., revenue S.d., utilization S.d., revenue
Great Trade Collapse 2411 2.328 0.223 0.0874
(July 2008 - End-2010) (0.371) 0.437) (0.237) (0.495)
N 120 120 120 120
R-squared 0.422 0.334 0.189 0.110

Panel C: Dispersion in Utilization: Ships Under Longer vs. Shorter Contracts

Contracts > 12 months Contracts < 12 months
(D (2) (3) 4)
S.d., utilization S.d., revenue S.d., utilization S.d., revenue
Great Trade Collapse 3.657 4.092 0.492 0.267
(July 2008 - End-2010) (0.431) (0.724) (0.278) (0.512)
N 120 120 120 120
R-squared 0412 0.254 0.389 0.189

Note: Each observation is a year-month. The regressions also include a constant and a fixed effect for the post-
2010 period. We consider two measures of dispersion in utilization. “S.d., utilization" is the standard deviation
of residualized capacity utilization in each year-month (with utilization normalized to range from 0 to 100),
while “S.d., revenue" is the standard deviation of residualized revenue in each year-month, where revenue is the
product of utilization and the freight rate index.

In Panel A, we measure dispersion across all ships. In our baseline analysis (columns (1) and (2)), we obtain
residualized utilization by regressing utilization on ship fixed effects and a time trend and recovering the
residuals; residualized revenue is calculated in the same fashion. In columns (3) and (4), we also control for
route-by-time fixed effects when residualizing utilization and revenue. Note that the coefficient in column (4) is
significant at the 10% level.

In Panel B, we document how between-charterer dispersion in utilization and revenue (Columns (1) and (2)), and
within-charterer dispersion (Columns (3) and (4)), change during the bust. In Panel C, we measure dispersion
separately for ships under longer contracts (Columns (1) and (2)), where the contract was signed at least 12
months prior, and for ships under shorter contracts (Columns (3) and (4)), where the contract was signed within
the last 12 months. For both Panels B and C, utilization and revenue are residualized by ship fixed effects and a
time trend, as in the baseline analysis.
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4.2 Observation 2: Evidence consistent with contract overhang
inhibiting reallocation

Counter-cyclical dispersion in ship utilization Figure 4a illustrates that dispersion in
capacity utilization is counter-cyclical, rising significantly during the “Great Trade Collapse”
when charterers were locked into long contracts. Table 2 documents that dispersion in revenue

is similarly counter-cyclical (Panel A, Column (2)).

The increase in dispersion is not simply explained by differential impacts of the recession on
demand in different trade routes, since we find a similar increase in dispersion even if we
control for route-by-time fixed effects when measuring dispersion (as shown in Columns (3)
and (4)).29 Furthermore, when we decompose the dispersion in utilization into its within-
charterer and between-charterer components (similar to Kehrig and Vincent (2024)), we find
that dispersion across charterers increases during the crash, while dispersion within charterers

remains the same (Panel B of Table 2).

Contract rigidities inhibit reallocation We next document evidence that contracting
rigidities prevent the immediate reallocation of ships. We first look at how the probability
that a ship is reallocated to a different itinerary changes over the lifetime of a contract. If
contracts did not inhibit reallocation, one would expect reallocations to happen more or less
independently of which stage of the contract the ship happens to be in. Figure 4b shows,
however, that the probability of reallocation jumps at the start of the contract (controlling for
ship fixed effects and a time trend). This is likely because charterers rarely adjust itineraries
and it is costly for them to establish new liner services (Haralambides, 2019). Note that we
do observe instances of within-contract reallocation in the data, and in Section 5 we discuss

how our framework accommodates these events.

In Panel C of Table 2 we document additional descriptive evidence about the connection

90ne example is described in Jiang (2018).

20Note that dispersion being lower during the boom is not a mechanical consequence of capacity utilization being
bounded above at 1, since capacity utilization equalled 1 for only 0.3% of ship-year observations during the
boom, and was higher than 0.95 for just 1.1% of observations.

20



between contract overhang and counter-cyclical dispersion in utilization. We show that the
rise in dispersion during the bust was concentrated among ships that were locked into longer
contracts (at least 12 months old); among ships with more recently signed contracts, the

increase in dispersion is much smaller and statistically insignificant.?!

4.3 Observation 3: Dispersion is not driven by regional shocks

An alternative explanation for the observed dispersion in ship utilization is that (i) some
demand shocks are regional (i1) it is very costly to move ships across space. If this explanation
were true it could imply that the observed dispersion is consistent with an efficient allocation.
As mentioned in Section 2, ships are designed to be highly movable across space, and so part

(ii) of this alternative explanation does not seem to accord with industry details.??

Additionally, we investigate whether the dispersion in Observation 2 is caused by regional
shocks. We find that 95% of the overall dispersion in utilization is due to dispersion across
ships operating on the same trade route, rather than between routes. Likewise, within-route
dispersion accounts for 91% of the dispersion in revenue.?®> Thus, there is considerable cross-
sectional dispersion in utilization even among ships operating on the same trade route during

the same time period. In other words, regional shocks do not seem to be a first-order concern.

4.4 Observation 4: Longer contracts are associated with market
thinness

How do firms choose their contract length? We present descriptive evidence that longer
contracts are associated with market thinness in Table 3. This consideration needs to be
weighed against the possibility of lock-in which would favor a shorter contract duration, where

conditions change and one party to the contract would prefer to break up the match.

In Table 3 we isolate the relationship between thinness and duration in the cross-section,

2I'While subleasing could theoretically reduce inefficiencies from long contracts, recall that these are rare for the
reasons discussed in Section 2.

22Furthermore, in the model we allow for an adjustment cost when a ship matches with a new charterer and
quantitatively show that this is not driving the results.

23See Appendix Section A.5 for how we identify which route a ship is on.
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Table 3: Longer contracts are associated with thinner markets

(1) (2) (3) 4)
Log(duration) Log(duration) Log(duration) Log(duration)
Log(# ships nearby, same type) -0.10™** -0. 117
(0.032) (0.032)
Log(# ships nearby, all types) -0.14** -0.15%**
(0.036) (0.035)
Log(time charter index) 0.85*** 0.85***
(0.040) (0.040)
Year fixed effects Yes Yes No No
Observations 2,803 2,803 2,803 2,803
Adjusted R? 0.137 0.136 0.158 0.157

Note: Standard errors in parentheses. We also include controls for ship heterogeneity (ship size fixed effects).
We exclude very large ships (Post-Panamax or larger), newly built ships, as well as contracts longer than 8 years,
to stay consistent with the estimation sample we use for the structural model. Our results are robust to these
controls and sample restrictions, as shown in Appendix A.9.

controlling for time-varying factors that might also affect contract duration. To do so we
construct a measure for geographical market thinness for each match by counting the number
of alternative ships nearby. We discuss the details about how we construct this measure in
Appendix A.6. Intuitively, the thinness measure traces out different regions across the earth,

with geographically isolated regions producing lower measures than trading hubs.

Overall, the results across the four specification in Table 3 show that thinner markets (with
fewer nearby ships) are associated with longer contracts. As well as being statistically
significant, the results are also economically significant: moving from the 1% quantile to the
99% quantile of market thinness results in about a 33% increase in contract duration. This

increase in duration is robust across specifications.

We emphasize that this exercise is not inconsistent with the view that the industry is
ultimately a global market. Although cross-sectional market thinness is useful for this
descriptive exercise, this variation is not first-order relative to changes in market thinness and
contract duration across time. For example, there is a five-fold change in duration across time

in the sample. Therefore, later in the model we abstract away from second-order variation
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across regions and the primary focus is the effects on the industry across time.

5 Model

5.1 Setup

Time is discrete with each period (a month) denoted by ¢. Agents are risk-neutral and
forward-looking, and have discount factor 3. There are two types of agents in our model,
shipowners and charterers. We assume that each shipowner owns a single ship, and so refer
interchangeably to ships and shipowners. There are n, homogeneous ships. Shipowners lease

out ships to charterers and we assume that each charterer requires a single ship.?*

Payoffs Agents choose for how long to match; we denote the contract length (in months) by
7. Every period the value of a match is given by 7;; — c. Here, c is the cost of operating the
ship borne by the shipowner. The component 7; ; is charterer i’s value of a match.? This Tt
is stochastic and subject to idiosyncratic shocks. With probability 1), the value is v, and we
say that the charterer is "alive". With probability (1 — 1) the value is O forever, and we say

that the charterer is "dead".

The parameters v; and 7, are largely determined by demand in the downstream market, where
the charterer schedules a ship and sells the container slots to exporters. Let z; denote aggregate
demand for container shipping services. We allow v; and 1), to potentially depend on the state

at time 7.

The fact that the 7;; shocks are idiosyncratic to each i is important because it generates
profitable reallocation opportunities. Concretely, it generates situations where a ship is

contracted under a dead match but could be profitably re-matched to another charterer. What

24Note that, in practice, charterers may own or lease other ships, and so one may be concerned that this could
generate a more complicated portfolio problem. To keep the focus on the contract length decision we choose
to not explicitly model this complex decision. Rather, the charterer’s value of a match and idiosyncratic shock
(described later) embeds such considerations.

2In practice, shipowners pay the operating costs of the vessel (e.g, crew), which are part of c¢. Charterers pay all
voyage expenses (e.g., bunker fuel) and cargo-handling costs; these costs therefore affect 7;,. More generally,
7;; embeds anything that would affect a charterer’s net benefits to leasing a ship. This includes demand in the
downstream market and a charterer’s ability to reallocate a ship within a contract.
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are these shocks? As discussed in Section 2, charterers have heterogeneous relationships
with downstream exporters, leaving them differentially exposed to demand shocks and other

disruptions.

To keep notation concise, from this point we dispense with charterer and ship-specific
subscripts. Let fl; x = H;‘Zl N;+; denote the probability that the charterer is alive k periods

ahead. Then, the expected total value of a 7-length contract at time ¢ (for T > 1) is:

7—1
m ¢ = (Vt - C) + [, Z ﬁk(ﬁuk"tﬂc —C) (1
k=1

Here, the expectation is taken over the industry state s;. At the start of the contract, the ship has
to be relocated from its previous location, so the charterer also incurs a one-time adjustment

cost ¢} on the initial contract.

Timing In each period, the timing is as follows (see also Figure 5):

1. Match expiry and charterer exit: The valuation v; remains positive with probability 7.

If a charterer is not under contract and no longer alive, then they will exit.

2. Contract extensions and entry: Existing contracts that are ending are potentially
extended with probability Peyeng if the charterer is still alive. Otherwise the ship, and
the charterer (if alive), are added to the pools of available ships and available charterers.
As well, e; charterers enter the market, where ¢, is a function of the aggregate state and

may vary over the boom-bust cycle.

3. Search and matching: Available charterers search and match with ships via random

search.

4. Choice of contract duration and price: If agents are matched, they choose for how long
to match (the contract duration), as well as a fixed price paid by the charterer to the

ship.?® The ship and the charterer choose the contract duration to maximize their joint

26This assumption is consistent with the fact that in practice, at the time of contract, the parties agree to a daily
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Figure 5: Timing within each period
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surplus from matching. Prices are then determined by Nash bargaining where 6 € [0, 1]

is the Nash bargaining weight of the ship.

5. Output The per-period output of the match (i.e., the sum of (7;; — ¢) across all matches

minus adjustment costs) is realized.

Search and matching Matching takes place in a single global market, consistent with how
practitioners view this market and with our descriptive evidence.?’” The mass of available
charterers is afh‘” . The mass of available ships is afhip . We use a matching function to
characterize the outcome of the matching process. The number of successful matches equals

hi .. . .
m(ac", a;"'"?), where m is increasing in both of its arguments.

We assume there are constant returns to matching, consistent with prior literature (e.g.,
Brancaccio et al. (2020)). Let 6, = o /ac"@" denote the market thinness (the ratio of
searching ships to searching charterers). Under the assumption of constant returns, the
probability of finding a match is a function only of 6;; denote these probabilities g"*(6;)

and ¢*"(6,) for charterers and ships respectively.

charter rate that is fixed over the duration of the contract.

27 As we showed earlier, ships are often reallocated large distances (exceeding 1000 km) at the beginning of a
new contract, so the set of possible matches is not necessarily constrained by the current location of the ship.
Moreover, new contract prices are highly correlated across regions, consistent with there being a single global
market for containership leasing.
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Discussion of assumptions We discuss two main assumptions in the model setup. First, we
assume that agents do not reject matches. This is justified because ships and charterers are
ex-ante homogeneous, and so there is little incentive to reject a match in order to wait for a

higher quality match to arrive.

Second, we model the idiosyncratic state of the match as a binary variable. In reality, this
process may be more continuous, with the value of a match falling over time until it is below
a critical value where the charterer would prefer to dissolve the contract. Modeling the state
of a match as a binary variable can be viewed as an approximation of this more complicated

process that allows us to keep the model tractable.

5.2 Contract duration choice

Match surplus An important component to the contract duration choice is the match surplus
St ¢. This is the joint value to the charterer and ship from a 7-period contract at the time ¢
state minus their outside options. Note that a contract can be either an initial contract or an
extension, and for the initial contract the total surplus also incorporates the adjustment cost,

ie.,itis —c; +8; 7. Here, S; ¢ is:

)

A shi A shi
Se=ome o HBE (RO M) + (AU

-~

Continuation values after being matched

_ ﬁEt <Uts_’/’fl.1p + nl‘Uﬁﬁ?n) (2)

Outside options

Value of T—period contract

Here, thip and M denote the value functions for ship and charterers at the end of the
initial contract if the charterer is still alive. As we discuss further below, M, hip, Mt embed
that the match may be extended if the charterer is still alive. The components U,Ship and Ut
denote the value functions for an unmatched ship and charterer. In the event of disagreement,
both the charterer and ship need to wait until the next period, when they may enter the pool of

searching agents.
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Choice of contract duration After matching, agents choose the contract duration based on
the match surplus and an idiosyncratic shock to the value of signing a T-period contract, €z,
which is drawn from an i.i.d type-1 extreme value distribution with scale parameter 6. We
are dispensing with ship-specific and charterer-specific notation, but the €; are idiosyncratic

to each particular match, as well as to each contract length.

Denote W; as the ex-ante surplus (the expected value of the surplus before the &; are drawn),

which can be written as the inclusive value formula:

W,=Ee| max {S,,T—{—Gef}] — Glog Y exp(Sic/0) | 407 3
Te€{1.2,.... Tiax T€{1.2,... Tnax}

where Y’ is Euler’s gamma and T4 is the maximum possible contract duration (in practice,

48 months).28 For the initial contract, since Equation (3) is the inclusive value and the

adjustment cost is an additive value, the ex-ante surplus is —c; +W;. Let P, ; denote the

probability that a matched charterer-ship pair chooses a contract of length 7:

exp(Si.z/0)
Yo exp(St,r’/G>

“4)

LT =

Note that it is individually rational for both ships and charterers to choose the contract duration
that maximizes the surplus of a match. This is because Nash bargaining implies perfectly
transferable utility. Furthermore, since the adjustment cost enters additively into all options for

the initial contract, this choice probability is the same both for initial contracts and extensions.

Other value functions In Appendix B.l we prove that the value of unmatched ships and

charterers can be written as:

Ut = g () (1 - 8)(W, <) + BB U™ ) +(1 = g™ (0) BREUT  (5)

(. /

Charterer’s expected payoft if matched

280nly 0.35% of contracts in our estimation sample exceed 48 months in duration.
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Utship _ qship(et) (S(M/t . Cf) +ﬁEtUtsfif) +(1 — qShiP(Gt))ﬂE,Utsflil) (6)

(.

Ship’s expected payoff if matched

The functions M"” and M have a similar form, with a modification to the probability an

agent is matched (explained more below) that incorporates extensions:

Mt — () (1= 8)W,+ BB UL ) +(1— g7 (8)) BREULA" ()

J/

(Expected) payoff if matched

M;hip _ qship(9t> (8“/[ +BEtUts_}ii1p> _|_(1 — éShiP(QI))ﬁEtU[sﬁilp (8)

(.

(Expected) payoff if matched

Here, we incorporate extensions in the objects §<"¥(6,), ¢*"P(6,) in the following way.
We model the probability that a previously matched ship will continue to be matched as:
GMP(6)) = Pextend + (1 — Pextend)q™7(6;), where Pexieng is a parameter to be estimated.
Likewise, we model the probability that a previously matched (and still alive) charterer will

continue to be matched as: ¢ (6;) = Pextend + (1 — Pextend )¢ (6;).

Our formulation for extensions allows for the possibility that alive matches are not always
extended (i.e. Pextena < 1).2° Doing so is important in the context of our model: for example,
consider the extreme case of Pexeng = 1 and ¢ — 0. Here, it is optimal for agents to sign single
period contracts and extend them month-to-month if and only if the match is alive each period.
This is clearly rejected by the data because we observe very few single-period contracts (only

4.5% of all contracts).

A further justification for our formulation for extensions is that it can be viewed as an
approximation of a continuous-time model where (i) unmatched charterers can contact ships
who are finishing their contract (ii) information about whether charterers will be alive arises
independently and continuously across charterers. Then, (1 — Pexiend)q*?(6;) approximates

the probability that the ship is contacted by an alternative unmatched alive charterer, before

2Recall as well that options to extend are rarely used, as documented in Section 2.
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information has arrived that the current matched charterer will be alive. In this case, the ship
will switch and match with the new charterer. Similarly, Pexeng 1S the probability that good
information arrives that the current match will be alive before the ship is contacted by an

alternative match.

5.3 Prices

Prices for a new 7 length contract at time ¢, p; 7, are determined by Nash bargaining where the

surplus is split as follows:

7—1 ) ) )
Z ﬁS(Pt,r - C) + BrEt (ﬁz,erﬁ’f + (1 - ﬁt,r)Uts-ih—?) - ﬁEtUtsﬂp =0 (_C;v + St,r + 681:)
s=0

(€))

The left-hand-side of the above equation is the ship’s value of being in the match versus
its outside option. The right-hand-side is the ship’s share of surplus. Note that this surplus
also includes the realization of the &; draws and the adjustment cost.>® The equation for an

extension is similar except the right-hand side does not include the adjustment cost.

5.4 States and computation

States The state for each agent consists of both its own state (i.e. whether it is unmatched,
and if it is matched the number of periods remaining on the contract and whether the match is
alive or dead), and a detailed industry state in period ¢, s;. The detailed industry state consists
of the aggregate demand state z;, the distribution of searching agents, and the distribution of
current matches. Since the market is relatively fragmented, we assume that each agent takes

the industry state as given.

The detailed industry state is high-dimensional.?! As such computing value functions with

such a state space is infeasible due to the curse of dimensionality. Instead we employ

30We assume that these draws and the adjustment cost directly affect the payoff of the charterer, so they enter
into the surplus on the right-hand-side but not directly into the ship’s payoff on the left-hand-side.

3lFor example, the distribution of current matches includes, for each match, a state for the number of remaining
periods and a state for whether the match is still alive.
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an approximation method similar to a Moment-Based Markov-Equilibrium (Ifrach and
Weintraub, 2017). Specifically, we assume that agents approximate the industry state by only
keeping track of the demand realization z; and the market thinness 6;, and that agents believe

the transitions of these aggregate states follow AR(1) processes.

Computation The computational algorithm involves an inner loop and an outer loop. In the
inner loop we compute the value functions given the current iteration of the AR(1) parameters.
In an outer loop we iterate over the AR(1) parameters, updating them to be consistent with
the detailed state evolution through forward simulation of the value functions in the inner
loop. Concretely, we estimate the AR(1) process for the demand realization z; “offline”
(since it depends on global economic conditions and is therefore arguably exogenous to the
containership leasing market), and update the process for 6;. We provide more information

about the computational algorithm in Appendix Section B.4.

5.5 Equilibrium

A dynamic equilibrium is characterized by a mass of searching agents (a", a;"'"), a

distribution of current matches (including how many periods remain on each contract, and
whether or not each match is still “alive"), contract duration choice probabilities, prices, and
agents beliefs about state transitions, such that at each state of the industry s;, the following

conditions are satisfied:
1. Agents optimally choose contract duration, according to equations (1)-(8).
2. Equilibrium prices are determined by Nash bargaining.

3. The mass of searching agents and charterers and the distribution of current matches

evolve as described in Section 5.1.

4. Agents have expectations over the evolution of the industry state (z;, 6;) governed by an

AR(1) process that is consistent with the true industry state evolution.
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Equilibrium uniqueness One may be concerned about multiple equilibria because actions
are strategic complements: it is better to choose a longer contract when others are also
choosing a longer contract. The complexity of the model does not allow us to provide a
formal proof that the equilibrium is unique. However, we carefully initialize the model from
a variety of starting points both in estimation and counterfactuals. Ultimately we find that
regardless of the initial point, the model converges to the same equilibrium, consistent with

the idea that multiple equilibria do not seem to be an issue empirically.

5.6 Discussion: Main mechanisms behind contract duration choice

Agents’ contract duration choice within each period ¢ is determined through two opposing
channels. On the one hand, there is the search frictions channel: signing a long contract is
beneficial because it means the agents do not have to search again and then potentially fail to
find a match. On the other hand, there is the lock-in channel: if the contract is too long then
it may result in lock-in of a dead match. The optimal contract duration balances these two

channels and maximizes the total match surplus of each pair.

How then does the model generate overall contract duration changes in booms and busts?
When a bust turns to a boom, there are two effects. The first is a ‘match effect’. Here, the
match itself could change through the parameters (v, ;). If, for example, the boom implies
that downstream demand from exporters is more certain, this would increase the probability

that the match survives 1), mitigating the lock-in channel and favoring a longer contract.

The second effect is a ‘market thickness effect’. Concretely, in a boom when more charterers
enter, market thickness for ships decreases. This decreases the probability of matching for
charterers but increases the probability of matching for ships. These probabilities affect
total surplus through the outside option to search again. Since the market thickness effect
goes in asymmetric directions for ships and charterers, the overall effect on total surplus is

theoretically ambiguous.

Ultimately, the bargaining parameter 0 governs this asymmetry. For example, consider the
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most extreme example where ships have no bargaining power and so charterers capture all the
surplus in future matches. This drives the outside option of ships to 0.0 in all periods. The
charterer’s outside option of searching again does change with the cycle, however, and will
typically decrease in booms.>? In this case, in a boom, the ‘market thickness effect’ causes the

match surplus of longer contracts to increase relative to short contracts.

Contracting externalities When a ship and a charterer choose to sign a longer contract based
on their private incentives, this causes the market for ships to become thinner, potentially
exacerbating search frictions and imposing a negative externality on the rest of the market.
Due to these contracting externalities, the decentralized choice of duration is in general not
socially optimal. We explore the inefficiency from this contracting externality, and how this

varies over the boom-and-bust cycle, in more detail in Section 8.

6 Estimation and identification

6.1 Overview and parameterization

We estimate the model in two steps. After calibrating three parameters, in the first step we
compute the evolution of the process for the demand shocks z; ‘offline’. Then we estimate
the rest of the parameters via simulated method of moments. Note that for the total number
of ships n; we use the empirical value in each period. Table 4 provides an overview of the

parameters and in which step they are estimated.

Calibrated parameters A period in the model is one month. Therefore we calibrate the
discount factor, B = 0.99. We calibrate the per-period cost of operating a ship ¢ =$2,500 per
day, based on Stopford (2009); Appendix B.2 has details.

Finally we calibrate adjustment costs c;: these mainly come in the form of lost time when a
ship is empty but traveling to its new match. Therefore we parameterize ¢; = c’v;, where ¢’ is

the time lost in transit. We assume that it takes half a month on average to move a ship from

32Concretely, it will decrease if the ‘match effect’, which also affects the value of future matches and therefore
the outside options, does not improve sufficiently in booms to offset the decrease in match probability.
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Table 4: Overview of parameters

Name Object Parameters Stage
Discount factor B Calibrated
Ship operating cost c Calibrated
Adjustment cost c; c’ Calibrated
Demand process % Y Stage 1
Charterer entry rate e Ye Stage 2
Charterer value Vv Y Stage 2
Charterer survival process il Yo, Yin Stage 2
Matching function q: o Stage 2
Duration-specific shock c Stage 2
Bargaining parameter 0 Stage 2
Extension parameter Pextend Stage 2

one match to another (consistent with typical ocean transit times), and therefore calibrate ¢* to

equal 0.5.3

Parametric forms We parameterize the match survival process as 1; = 1 = ®(—=%,n — ¥1,n2)
where ®(.) is the standard normal CDF and ¥ 5,7, are parameters. We parameterize the
match value as v; = %,z; and the charterer entry process as e; = ¥,z;, where ¥,, 7, are parameters.
We assume the urn-ball matching function (Petrongolo and Pissarides, 2001), which implies

the following match probabilities:

qship(@t) =min{l —exp(—a/6,),1,1/6,} (10)

g (6,) = min{6,(1 —exp(—t/6;)),1,6;} (11)
where « is a parameter capturing the efficiency of the matching process.

6.2 Identification

We discuss how we identify the stage 2 parameters in the simulated method of moments.

330n average, a ship has to travel 3100 km when it is reallocated, which would take around 3-4 days at typical
container-ship speeds of 18 - 25 knots. We assume the time lost is 15 days to account for potential port
congestion (Brancaccio et al., 2024) and because ships carry less cargo than usual just prior to beginning a new
contract. We obtain similar results if the time lost in transit is calibrated to 7 days or set to zero.
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Charterer survival process 71, and charterer value v, The parameters }yy,7%,, Which
underpin the charterer survival process 1;, are identified by matching the counter-cyclical
patterns of dispersion in capacity utilization in the data. Concretely, we include two moments:
the average dispersion in a high demand period (2006-2008) and the average dispersion in
a low demand period (2009-2010). Similarly, the parameter %, which underpins how the
value of a match changes with the cycle, is identified from two moments corresponding to the

average contracted prices of a ship in a boom and a bust.3*

Bargaining parameter 6 Intuitively, the model allows for two reasons for lengthening
contracts in booms. The first is that the match value may systematically change in the
boom - this is already pinned down through the estimates for % n, % n,%. The second is the
bargaining parameter 6. A smaller bargaining parameter gives charterers a higher share of the
match surplus, and this tends to amplify differences in the charterer’s outside option in booms
versus busts. This then makes differences in the match surplus of a long versus short contract
more procyclical, and the corresponding equilibrium contract duration choice is also more

procyclical.

Therefore, § is identified by fitting the residual cyclicality of contract duration, once match-
specific factors are controlled for. So we include two moments for the mean duration in a high-
demand period (2006-2008) versus a low-demand period (2009-2010), as well as moments
for the mean duration during booms and during busts. We emphasize that this identification
procedure could result in a potentially high &, or a low &, depending on the cyclicality of the

match-specific factors (1, and v;).

Extension and duration-specific shock parameters The probability of extension Pexeng 1S
identified by matching how the average probability of an extension in the data differs between
booms and busts (Appendix A.7 discusses how extensions are measured). The standard
deviation of the logit shock o in the contract duration choice is identified through a moment

for within-period dispersion of contract duration.

34*We define a boom as any period where the demand state z; exceeds its sample mean; any other period we
classify as a bust.
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Matching function parameters We identify the match efficiency o by directly matching the
elasticity of contract duration with respect to market thickness after controlling for the demand
state z; (i.e., the regression in Column (3) of Table 3). Intuitively, when « is larger, a given
increase in market thickness will result in a larger increase in the probability that charterers can
find a match (since matching frictions are smaller), making contract duration more responsive

to changes in market thickness.

Charterer entry process With o identified, there is a one-to-one mapping between the
proportion of ships under contract in each period and the (unobserved) number of searching
charterers. With the survival process 1), for charterers also identified, we can therefore identify
the entry process e¢; by matching how the share of ships under contract moves across the
cycle. In practice, we match a moment for the mean and standard deviation of the proportion
of ships under contract in the bust, as well as the difference in the proportion of ships under

contract in the boom vs the bust, to identify 7,.3

6.3 Estimation

First stage: the demand state Since the demand state is not directly observed, we recover it

“offline”, similar to Jeon (2022). We first estimate demand for container-ship services:

di = Yozt Nzt + YZ,ZXI + gt (12)

where d; is the total amount of cargo carried by containerships during period ¢, and r; is
the price of hiring container-ships (which we measure using the time-charter rate index). X;
denotes observed demand shifters, while & denotes idiosyncratic demand shocks. Following
Jeon (2022), we instrument for the price r; using the average size and age of ships, and the
share of ships older than 20 years: these are all cost shifters since larger and newer ships are

more cost-efficient.

33See Appendix A.3 for how we calculate the proportion of ships under contract.
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Having estimated equation (12), we define the demand state z; as:

z=fo.+hX+E& (13)

where 9. and $ . are estimated regression coefficients, and é, is the estimated demand
residual. We then smooth z; using a local polynomial regression, and estimate its AR(1)

transition process, as described in Appendix B.3.

Second stage: simulated method of moments We use the moments described above in
Section 6.2 using a diagonal weight matrix. We scale the weights on the diagonal so that
the moments enter into the objective function with a common scale and detail the specific

weights in Appendix Section B.5.

When constructing the moments, we exclude 3.9% of ships that are Post-Panamax or larger
(i.e., above 5,000 twenty-foot equivalent unit (TEU) in capacity), so that the resulting sample
is relatively homogeneous in terms of ship size. We also exclude 6% of the contracts that are
by newly built ships, since we do not model the use of contracts as collateral to obtain cheaper
financing terms. Likewise, we exclude a very small number of contracts longer than 8 years
(about 0.2% of the sample), as some of them may be “capital leases" where the charterer
acquires the ship upon contract expiry (Gavazza, 2010). The resulting sample has 2,826
contracts. Finally, when constructing the moments, we residualize the data to control for

ship heterogeneity, as described further in Appendix Section B.5.

7 Results and model fit

First-stage demand estimates Appendix Table B.1 reports demand estimates. Aggregate
demand is estimated to be somewhat price-inelastic, with an average elasticity around -1.36.
Appendix Figure B.1 shows how the demand state z; evolves over time. In addition to the large
boom and bust in the 2000s, demand also fluctuates considerably between 2010 and 2015: for

example, there is a sizeable spike in demand in 2011.
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Second-stage parameters Table 5 shows the estimated parameters. In the Appendix, Table
C.1 provides a comparison between the empirical moments and the simulated moments; the

model fits the data well.

We find a matching efficiency parameter o of 0.14, indicating sizeable search frictions. As an
illustration, if the market were perfectly balanced with an equal number of ships and charterers
(so 8 = 1), an o of 0.14 implies a meeting probability of 13% per period for charterers.
This corresponds with anecdotal evidence (see Section 2) that search frictions are a first-order

feature of this market.

We next turn to the bargaining parameter 8. We again emphasize that the magnitude of 9 is
an empirical question and a high value of 0 that favors ships is consistent with procyclical
contract duration if the match-specific factors in the model (v;,7n;) are also sufficiently
procyclical. In our context, we find a 6 = 0.12, which implies that charterers capture most of
the match surplus. However, it is hard to interpret 6 in isolation. This is because there are two
channels in the Nash bargaining solution that generate negotiation asymmetries: differences
in the outside options and the J. For example, an arguably more interpretable measure of the
outcome of the negotiation process is the ship’s share of total profit (rather than the surplus,
which also includes the outside options). This value (averaged over the sample) is 0.29, which
implies that charterers still do well in the negotiation process but — because ships have a

strong outside option — not as well as one might expect looking at the raw magnitude of J.

Furthermore, the low 0 for ships is consistent with institutional characteristics of the industry.
The market for leasing containerships is relatively new compared to our sample period: it
did not exist before the 1990s (Stopford, 2009). However, the firms that charter ships have
been around for decades offering liner services using their own ships. Therefore, these
shipowners who specialize in leasing out ships are relatively inexperienced and potentially

less sophisticated at negotiating.
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Table 5: Parameter estimates

Parameter Estimate SE

Ship bargaining weight, & 0.117 0.016
Matching function parameter, o 0.144 0.011
Std. dev. of logit shock, o 0.409 0.009
Survival prob. parameter, o 1.140 0.014
Survival prob. parameter, ¥; 0.178 0.007
Per-period value of leasing ship, ¥, 1.760 0.056
Entry rate, 7, 8.144 0.389
Probability of contract extension, Pexeng  0.225 0.014

8 Counterfactuals

8.1 Quantifying misallocation and the effects of booms, busts, and the
transition

We begin by documenting how the decentralized equilibrium contract length changes with the
business cycle in our model and the implications for misallocation. We compare the results
to a constrained social planner, who still faces search frictions and no information about the
realization of future shocks, but is able to coordinate firms to set a contract length each period

that optimally maximizes total welfare (measured in total joint profits) of the market.3®

We present the results in Figure 6, with additional numerical results in Table 6. In Panel (a)
of Figure 6 we plot the decentralized contract duration in the solid black line and the demand

process in the dotted line. Consistent with the data, it is pro-cyclical.

We compute the constrained optimal duration in Panel (b). We find, strikingly, that the optimal
contract length is actually counter-cyclical and decreases in the boom. We provide more

intuition for this later through a decomposition exercise.

The difference in total profits of the firms (misallocation) moving from the decentralized

36To compute the social planner’s duration for any given state, we iterate over all possible contract durations,
compute the equilibrium total welfare for each selection via forward simulation, and then choose the contract
duration with the corresponding highest total welfare.
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Figure 6: Misallocation across the boom-bust cycle

(a) Decentralized equilibrium (b) Constrained optimal duration
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Note: Panel (a): This shows the average duration in the baseline case (in the solid line) versus the demand shifter
(in the dashed line). Panel (b): Shows the optimal duration for a social planner that is constrained to not have
information about future shocks, and where search frictions are still present. There is a single monthly optimal
duration at each time and so there are discrete jumps between time periods. Panel (c): Misallocation between the
decentralized vs optimal duration, measured in terms of total joint profits.

39



Table 6: Misallocation and utilization dispersion results for various counterfactuals

(a) Duration (months) (b) Dispersion in utilization

06-°08  °09-’10  Overall °06-°08  ’09-’10  Overall
Baseline 9.7 6.2 7.5 0.157 0.174 0.164
Optimal contract 3.6 7.2 5.8 0.065 0.161 0.122
Intermediary - baseline duration 9.7 6.2 7.5 0.157 0.174 0.164
Intermediary 1.0 1.0 1.0 0.000 0.001 0.001

(c) Total welfare (percent change from baseline)

(i) Transition (1) Overall
Quality Quantity  Total  Quality Quantity  Total
Optimal contract 11.7 -1.1 10.7 6.8 -1.2 5.6
Intermediary - baseline duration 0.0 0.0 0.0 0.3 2.6 29
Intermediary 35.8 0.0 35.9 37.8 3.7 41.5

Note: Panel (a) and (b): The period *06-’08 is the start of the data and corresponds to a boom; the period *09-’10
corresponds to the bust and the period where dispersion in utilization spikes in the data. Panel (c): Total welfare
is measured in terms of the joint profits of the firms. ‘Quality effect’ is determined by keeping the number of
matches constant and measuring the change in total profit moving to the counterfactual. ‘Quality effect’ is then
the remaining effect determined by changing the number of matches holding the total average profit of each
match constant. The transition is the period in late 2008 - early 2009 when the market crashes.

contract to the optimal duration is pictured in Panel (c). The level of misallocation follows
the level of the demand realization but with a lag. The lag occurs due because it takes time
for the stock of existing contracts to accumulate (or de-accumulate in a crash). As a result, the

corresponding effects on market thinness and misallocation can take time to appear.>’

Overall, misallocation from the contracting externality results in a 5.6% reduction in industry
profits. Misallocation is cyclical and is especially high during the transition from the boom to
the bust (because of the contract overhang generated in the boom). Indeed, in the transition in
2009, misallocation jumps to over 10%. We see a similar jump after a smaller demand shock

in 2012.

These results illustrate a second implication of the efficient contract: it also allows the market
to flexibly respond to aggregate shocks across booms and busts. To put it another way, the

supply chain rigidities that result from the long decentralized contract overhang in booms —

3T This also highlights an advantage of our framework, which is that it is not simply a comparison between a
steady-state boom and a steady-state bust. Rather, we accommodate that the market is constantly in transition.
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which are a striking feature of the descriptive results — are inefficient.

Decomposition We develop intuition by decomposing total misallocation into a quantity
effect and a quality effect in Panel (d) of Figure 6. To do so we begin with the decentralized
contract duration. We then measure the change in total welfare keeping the number of matches
fixed, but changing the profit per match to equal the level at the optimal contract duration
(quality effect). This will be positive if the probability of an “alive” match is higher under the
optimal duration. We then allow the number of matches to vary, and the resulting change in

welfare is the quantity effect.

The decomposition in Panel (d) therefore illustrates the planner’s tradeoff. On the one hand, if
contracts are too long then there may be lock-in of matches that have expired but are still under
contract. These contracted ships could be reallocated to “alive” charterers who are unmatched.

This is the quality effect.

On the other hand, if contracts are too short, ships who are matched to charterers who are
“alive” at the end of the period will need to search again. But searching involves frictions
where they risk being unmatched; ex-post they would rather have remained under contract.
This is the quantity effect. Note that the planner’s tradeoff is somewhat similar to the trade-off
agents face when choosing the optimal contract length. The key difference is that the planner

internalizes equilibrium effects since they are maximizing total welfare.

With the above trade-off in mind, consider the market in the boom when it is unbalanced with
more searching charterers than ships. Here, the probability that an unmatched ship will match
with a charterer in the search process increases. This implies that the contracting externality
from long contracts also increases; it is better to thicken the search market and allow for ships
to rematch with a high probability with “alive” matches, than to risk lock-in with a longer
contract. Conversely, in a bust, the number of searching agents on both sides of the market is
more balanced. In this case, the probability a ship will successfully match with a charterer if it
searches is relatively low; this provides incentives to the planner to choose a longer contract,

which is why the optimal contract duration is counter-cyclical.
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Effects on dispersion in ship utilization Table 6(b) illustrates dispersion in ship utilization in
booms, busts, and overall, across the counterfactuals. In the presence of search frictions, some
dispersion is still efficient, as illustrated by the results for the optimal contract. Concretely,
dispersion would be 0.164 under the decentralized contract baseline, but significantly lower
at 0.122 under the optimal contract. Therefore, approximately 74.6 percent of dispersion is

efficient and 25.4 percent is inefficient.

The intuition behind these findings is similar to the intuition behind the optimal contract.
Dispersion rises due to contract lock-in which creates more “dead” matches. However, some
risk of lock-in is optimal because a contract that is too short means that agents have to search
more frequently. In the presence of search frictions, this can generate an inefficiently high

number of unmatched agents.

Role of search frictions/an intermediary The above findings all consider a “constrained

optimal” contract length where a planner still faces search frictions. What is the role of

search frictions in the results? To answer this question we implement an intermediary —

intuitively, an Uber for containerships — which eliminates search frictions. We operationalize
ships

this by implementing a “frictionless’ matching function of min{a;"""*,a"*"} and also setting

P.yvena = 1. Agents then choose their privately-optimal contract.

The results in Table 6 show that an intermediary would result in an extremely short contract
in equilibrium (in part due to agents’ ability to continuously extend the contract), and almost
eliminate dispersion in utilization. Overall, an intermediary would increase welfare by 41.5%.
Note that the benefits of an intermediary are amplified by the interaction between search
frictions and endogenous contracting rigidities: if duration were held fixed at baseline levels,

introducing the intermediary raises welfare by only 2.9%.

8.2 Policy implications: evaluating subsidy pass-through

Finally, we illustrate the implications of endogenous rigidities for evaluating maritime
subsidies. These subsidies are large, totaling billions of euros per year in the EU alone, and

directly target both sides of the market (see OECD/ITF (2019) for a comprehensive list of
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subsidies). For example, on the charterer side of the market, these can take the form of tax
exemptions for fuel and reductions in corporate tax through ‘tonnage taxes’; these correspond
to a constant increase in v; in the model. On the shipowner side, subsidies directly reduce
labor costs of the crews (which would correspond to a decrease in ¢ in the model). Although
these subsidies are primarily national policy tools aimed at supporting shipping to and from
domestic markets, in practice most developed countries use subsidies and so we investigate
global changes in these arrangements. Specifically, we ask: 1. what is the pass-through of
these subsidies to the industry in the presence of endogenous rigidities, and how does this

vary across booms and busts? 2. which side of the market should policymakers subsidize?

If rigidities are fixed then we would expect complete pass through: a dollar in subsidies
increases the joint profits of the firms by one dollar, and this is independent of which side of the
market is directly subsidized. However, when rigidities are endogenous, there is an additional
effect that may reduce the efficacy of subsidies. If the subsidies also interact with the contract
length — for example, by making longer matches more valuable thereby inducing agents to
sign longer contracts — then they will thin the market. This then worsens the contracting

externality, making it harder for other agents to find matches, which can reduce output.

We present the results in Table 7. Under fixed rigidities — keeping the contract length the
same in the counterfactuals as in the baseline — the pass-through is equal to 1. However, in
the presence of endogenous rigidities the pass-through is less than 1, due to the interaction
between subsidies and endogenous rigidities. These results favor counter-cyclical subsidies,
since contracting externalities are substantially lower in the bust, implying higher pass-through

of the subsidies.

Subsidies have an asymmetric effect depending on which side of the market is directly
affected. The pass-through is substantially lower for a ship subsidy at 0.36 compared to 0.89
for a charterer subsidy. Overall, the policy recommendation that it does not matter which side
of the market is subsidized — which corresponds to the simple fixed rigidities model — is

qualitatively different in the endogenous rigidities case.
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Table 7: Policy counterfactuals: pass-through of subsidies to total industry profit

Fixed rigidities Endogenous rigidities

Boom Bust Total
Ship subsidy: ¢ 1.00 0.13 047 0.36
Charterer subsidy: v; 1.00 0.75 098 0.89

Note: These counterfactuals measure pass-through, defined as the dollar change in (joint) industry profits for a
dollar change in the subsidy. We consider a subsidy that decreases the ship operating cost ¢ and a subsidy that
increases the charterer’s net value of a match (v;) by a fixed amount each period. ‘Fixed rigidities’ computes the
pass-through holding the contract duration fixed at the baseline. ‘Endogenous rigidities’ computes pass-through
allowing the contract duration to change. Pass-through will be lower under endogenous rigidities if the subsidy
causes a change in contract duration, leading to an equilibrium increase in inefficiency.

To understand the intuition behind the asymmetric effects of subsidies, recall that the
individually-optimal contract duration is determined by a trade-off between the risk of lock-in
with a bad match versus the option value of continued search. When a ship subsidy (a ¢
change) is implemented, the agents receive the subsidy regardless of whether or not the match
is productive, and so the private (but not the social) cost of being locked into a bad match is
reduced.®® As a result contract duration increases substantially and so does the corresponding
externality (especially during the boom), which cuts into the efficacy of the subsidy. By
contrast, a charterer subsidy (a v, change) implicitly ends up being better targeted towards
productive matches.?® Therefore, the equilibrium duration (and the resultant externality) do

not change as much.

9 Conclusion

This paper shows how endogenous rigidities — in the form of agents’ choice of contract
duration — affect physical capital reallocation in decentralized markets with search
frictions. To do so we exploit rich data on contracts and allocations in the market for leased
containerships; a market that is also important by itself as a key part of the supply chain.

Using these data and an empirical model, we argue that agents choose longer contracts in

3BIf the match value expires, the ship incurs a cost of ¢ each period, which in the absence of subsidies would
disincentivize longer contracts — but now that cost is partly subsidized.

3For example, fuel tax exemptions are more beneficial to a charterer that will use the ship productively than one
who only uses the ship sparingly.
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booms when the market becomes thin, and that this results in a contracting externality that

implies contracts are too long in booms, leading to misallocation.

Using the model, we find that there is significant misallocation from endogenous rigidities,
particularly during the market crash as it transitions from a boom to a bust. We also show
that endogenous rigidities substantially reduce the efficacy of maritime subsidies, which is a
common and large-scale form of industrial policy in the industry. Overall, given that contract
duration also rises during booms across a range of other capital markets, our paper suggests
that accounting for endogenous rigidities is important for understanding the process of capital

reallocation in booms and busts.
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A Appendix

A.1 Data construction

The contract data includes a number of key contract details, most notably the charter period
(or duration), and the contracted charter rate (in $/day); as well as the charterer name. For
some contracts, we also observe the “delivery location", which is the location where the ship is
transferred from the shipowner to the charterer. The contract data also includes information on
ship characteristics, such as vessel type, name, twenty-foot equivalent unit (TEU), deadweight
tonnage, and year of build. We match each ship in our dataset to a comprehensive dataset of
containerships collected from Vessel Finder, which includes a variety of additional ship-level
information (e.g., ownership information), as well as (crucially) the International Maritime
Organization (IMO) number for each ship. We use these IMO numbers (unique to each ship)

in order to merge the Clarksons contract data with port call information from Lloyd’s.

Some contract records from Clarksons lacked precise charter durations but provided
approximate ranges (e.g., “20-40 days" or “5-7 months"). To facilitate the empirical analysis,
we computed two measures of contract duration: mean values (e.g., 6 months for “5-7
months") and the maximum period (e.g., 7 months for “5-7 months" or the period until the
next contract for the ship starts, whichever comes first). Our baseline analysis is carried out
using the maximum period of each contract as the contract duration; all our results, however,

are robust to using the other measure instead.

Our full dataset of contracts includes over 16,000 time-charter contracts from 1999 - 2022. Our
analysis focuses on the period of 2005 - 2015. After implementing the sample cuts described in
Section 6.3 (e.g., remove very large ships or brand-new ships), we are left with 2,826 contracts

in our main estimation sample.

In addition to the contract data, Clarksons’ Shipping Intelligence Network provides aggregate
indexes such as the containership time-charter rate index, China Containerized Freight Index

(CCFI), and Singapore bunker prices ($/Tonne). The containership time-charter rate index
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is an index published by Clarksons based on daily rates of newly negotiated time-charter
contracts. The China Containerized Freight Index (CCF]I) is an index of container freight rates
based on the price of containers leaving from all major ports in China. Bunker prices are
indicative of the fuel costs of operating containerships (paid for by charterers when ships are

leased).

A.2 Measuring utilization

To measure utilization, we exploit the fact that for many port calls, we observe the draft of the
ship, which is indicative of how much cargo the ship is carrying. We then define utilization as
the percentage of the ship’s capacity that is used for carrying cargo; if this number is low, it
suggests the ship is not being fully utilized. While we do not directly observe this in the data,

we can infer utilization from draft data, as we describe below.

Each ship has a “scantling draft” (Hy), also referred to as the design draft, which represents the
ship’s draft when fully loaded and is a constant value since the ship is constructed to operate
at this specific draft. While we don’t observe the scantling draft, we proxy for it by choosing

the observed maximum draft for the specific ship in the data.

A ship that is sailing without cargo is sailing "in ballast". In practical terms, a ship is
considered to be sailing in ballast if its draft is less than a specified threshold value known as
the "ballast draft" (Hp). In the maritime engineering literature, a weight of 0.55 (relative to
the scantling draft) is employed to establish the ballast draft (Heiland et al., 2022). Following
this literature, we define the ballast draft (Hg) as 55% of the ship’s scantling draft (Hs). We
then compute utilization, defined as the percentage of the ship’s capacity that is being utilized

on a specific voyage, using the following formula:

Utilization = (HA - HB)/(HS - HB) (14)

where Hy is the draft reported in the port call data. Note that in the analysis we always account

for ship heterogeneity when using this measure (e.g., by including ship fixed effects), in order
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to ensure that the measure is comparable across vessels.

Finally, since ships only report draft information when they arrive at or depart from a port, this
measure of utilization only captures the intensive margin (i.e., how full the ship is, conditional
on being non-idle). We separately measure the extensive margin by using the port call data to

identify idle ships, as we discuss in the next section.

A.3 Measuring idleness

Identifying whether or not a ship is idle We use the port call data to identify whether or not
a ship is idle. If a ship is not being utilized at all, it will typically stay moored at a single port

for a longer period than is needed for the ship to unload and load.*"

We assume conservatively
that it takes a maximum of 7 days for a ship to unload and load at a port (taking into account
port congestion), and that any length of time it stays beyond that time is idle time. Based on
this measure, we are able to calculate, for each ship, the number of days it is idle each month.

Aggregating this across ships allows us to measure the overall share of idle ships at any point

in time.

On average, across our sample from 2005 to 2015, ships are idle 6.8% of the time. As a validity
check, we compare this data-driven measure of the share of idle ships with that published by
Clarksons (but which is only available from 2014 onwards).*! Between 2014 and 2015, our
method finds the share of idle ships is 4.6%, which is reasonably close to the 5.0% share

calculated from Clarksons data.

Measuring proportion of ships under contract The most direct way to measure the
proportion of ships under contract at any point in time would be to simply count the number
of ships in port call data with active contracts; however this is is likely to be an under-estimate

since we do not see the universe of contracts.

40Note that a ship’s draft is not reported except on days the ship arrives at a port or departs from it, which is why
draft data itself is not enough to identify idleness.

41 Clarksons utilizes AIS vessel tracking data to identify ships that have a very low average speed and therefore
are idle.
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Instead, we leverage our measure of idleness in order to calculate the proportion of ships under
contract. When we do this, we allow for the possibility that ships may be idle even when they
are under contract: this could be because they are undergoing repairs, or because the match
has low value and the charterer is not able to find a productive use for the ship. As Figure A.1
shows, while the share of ships under contract that are idle is substantially smaller than the

overall share of idle ships, it is still higher than zero.

Figure A.1: Share of idle ships
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Let u denote the share of ships that are not under contract (or unemployed). Let i,,,; denote
the overall share of idle ships, and i ousrqcr the share of ships with a contract that are idle.
Assuming that a ship without a contract is necessarily idle, we can decompose i,yerqi; as

follows:

Loverall = U+ (1 - u)lcontract

Re-arranging this yields the following equation for u, the share of ships without a contract:

Loverall — lcontract

I —icontract

Figure A.2 plots the share of ships under contract (i.e., (1 —u)) over time, which (as expected)
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is pro-cyclical. Notice, however, that even during the bust, a very high share of ships (over

92%) is under contract.

Figure A.2: Share of ships under contract
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A.4 Measuring reallocations

We use the port call data to measure ship reallocations. The key challenge is that since
container-ships are operated like “buses"”, they may travel very long distances and stop at a
large number of ports while remaining within a fixed schedule.*?> Thus, the mere fact that a
ship physically travels from one port to another is not itself evidence the ship is being actively
re-allocated from one use to another, since it may be simply fulfilling an itinerary that was

decided many months ago.

We therefore develop an algorithm for identifying when a ship is reallocated. The idea behind
the algorithm is that if a ship is reallocated, it is likely to stop at a new set of ports compared
to those that were on its original itinerary. Thus, when we observe a ship visit a new port that

it has not visited in recent months, we can infer that the ship has been spatially reallocated.

To be sure, sometimes a containership may visit a new port that involves a minimal deviation

from its existing itinerary.*> These are unlikely to be true reallocations of the ship, and

42For example, one containership in the data was observed to first stop at several ports in New Zealand, make its
way up to North America (stopping at several Canadian and American ports), then travel to Western Europe,
then return back to New Zealand (stopping in Colombia along the way). This sequence was repeated several
times.

43 An example of this would be a ship that is on an itinerary involving regular round-trips between Tokyo and
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instead may simply represent extra voyages the carrier/charterer has decided to make while
largely sticking to their original route. Thus, in order to not classify such minor deviations as
reallocations, we also require that the new port that is visited be a sufficiently large distance

away from any of the existing ports that the ship visited.

We now describe the algorithm we use to formalize this idea. For every port call, we calculate
the minimum distance between coordinates of the current port call and all the other port calls
in the last 6 months. The metric is assigned a value of 0 if the vessel has made a prior call
at that port within the preceding 6 months. Conversely, when the port represents a new Vvisit,
the metric assumes a positive value, with its magnitude increasing proportionally as the port’s
distance from the current location grows, indicating a more significant alteration to the voyage

schedule.

To rule out “false positives" caused by minor deviations from a set route, we classify the ship
as having reallocated in a given time period only if the minimum distance metric exceeds a
threshold value of 1,000 km. This threshold is large enough such that it would be very costly
for a ship to temporarily deviate from an existing route by such a large distance; thus, we are
more likely to pick up “true reallocations" where the ship’s itinerary is substantially changed.
We found this algorithm to work well in practice; the episodes it identifies as reallocations
match well with what appear in the data to be true reallocations.** An example of how we
identify reallocations is depicted in Figure A.3, which plots the minimum distance over time
for a single ship: there are three instances when the minimum distance from ports visited in
the last six months exceeds 1000 km (in October 2008, June 2009, and August 2011), which

the algorithm classifies as reallocations.

Singapore, which at some point decides to make a stop at Manila along the way.

4We recognize that the choice of 1000 km as a threshold is somewhat arbitrary. Our results on reallocation are
robust to other ways to measure reallocation, such as the average distance by which the ship was reallocated
when it visited a new port.
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Figure A.3: Example of how we identify reallocations
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Note: This figure plots the minimum distance from all ports visited in the previous six months, for an example
ship. The horizontal line is the threshold of 1,000 km: if the minimum distance exceeds 1,000 km, we identify
that as an episode of reallocation.

A.5 Measuring dispersion in revenue

As we discussed in Section 3.2, we use cross-sectional dispersion in physical capacity
utilization (residualized of ship heterogeneity) as our primary metric for inferring
misallocation. However, dispersion in physical utilization may not necessarily imply
an inefficient allocation of ships, if the prices of shipping services are heterogeneous across
ships. For example, some charterers may operate on routes where the amount of cargo that
needs to be moved each period is relatively limited (so that the charterer will have to operate

at low physical utilization), but the value of moving that cargo is high.

As an alternative, therefore, we also construct a revenue-based dispersion measure. We
multiply residualized capacity utilization by the freight rate of the itinerary the ship is
operating on to obtain the revenue of the ship each month, and then calculate the standard
deviation of the revenue each month. In this section, we discuss how we measure freight

prices.
Our raw data does not include a direct measure of the freight price. In general, due to the

54



confidentiality of the contractual agreements between charterers/shippers and downstream
exporting firms, granular data on freight prices is impossible to obtain, except for a few
specific importing countries.*> Instead, our approach takes three steps. First, we classify all
the itineraries/schedules into one of a selected number of trade routes.*® Second, we collect
data on average freight rates in each of these trade routes, which we obtain from various
industry sources. Third, we match these freight rates to the specific route that each charterer

is operating on at each time, which we identify by utilizing port call information.

We classify all the observed itineraries into the following major trade routes, using the criteria

listed below:

* Asia - North America (Trans-Pacific): port calls to Asian and North American ports
account for at least 70% of all port calls on the itinerary, and each of the individual
regions (Asia, North America) must separately account for at least 10% of the port

calls.

* Asia - Europe: port calls to Asian and European ports account for at least 70% of all port
calls on the itinerary, and each of the individual regions (Asia, Europe) must separately

account for at least 10% of the port calls.

* Europe - North America (Trans-Atlantic): port calls to Asian and North American ports
account for at least 70% of all port calls on the itinerary, and each of the individual
regions (Europe, North America) must separately account for at least 10% of the port

calls.

* North - South: any itinerary that is on one of the “North-South" trade routes, which
includes Asia-South America, Asia-West Africa, Asia-Australia, Europe-South
America, Europe-West Africa, Europe-Australia, North America-South America, North

America-West Africa, and North America-Australia. For an itinerary to be classified

4For example, Ardelean and Lugovskyy (2023) collect transaction-level data for the Chilean import market in
order to study price discrimination in liner shipping.
46See Section A.4 for the algorithm we use to classify port calls into itineraries.
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into any one of these trade routes, the joint share of port calls to the two regions must

be at least 70%, with each region having an individual share of at least 10%.
e Intra - Asia: at least 90% of the port calls on the itinerary are visits to Asian ports.
* Others: any itinerary that cannot be classified into one of the above trade routes.

We use the above classification because we have data on freight rates that can be used to
construct a quarterly freight price index for each of the first five routes. For Asia - North
America, we use the average of the CCFI (China Containerized Freight Index) for the China-
US West Coast and China-East Coast trade routes. For Asia-Europe, we take the average of the
CCFI for the China-Europe and China-Mediterranean routes.*’ For Europe-North America,
we use the freight rate reported in UNCTAD up until 2009, and impute the freight rate from
2010 onwards.*® The freight rate index for the North-South trade route is constructed as an
average of the CCFI freight rate indices for the China-Australia/New Zealand, China-South
America and China-West Africa routes. The freight rate for the Intra-Asia trade route is the
average of the CCFI indices for the China-Hong Kong, China-Japan, China-Korea, and China-
Southeast Asia routes. Finally, for all other trade routes, we assume their freight rate index

equals CCFI’s overall global freight rate index.

Our classification of trade routes follows classifications commonly used in industry reports.
For example, UNCTAD’s reports from 2010 - 2015 report “North-South" annual freight
rates that are the average of the Shanghai-South America, Shanghai-Australia/New Zealand,
Shanghai-West Africa, and Shanghai-South Africa freight rate indices; we follow the same
regional classification when constructing our version of the freight rate index. Finally, we

normalize all the freight rate indices so they equal 100 in the first quarter of 2003 (which is

47An alternative approach for these two routes is to use freight rates reported in UNCTAD’s annual reports,
similar to Jeon (2022); this yields a very similar measure of the Asia-North American freight rate.

“The imputation is needed as UNCTAD stopped reporting Europe - North America freight rates from 2010.
We first regress the Europe-North America freight rate on CCFI freight rates in other routes (namely, China-
Europe, China-US West Coast, China-West Africa, China-South America) in the pre-2009 period. Then from
2010 onwards, when we only observe the CCFI indices, we use the estimated regression equation to impute
the Europe - North America freight rate.
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the first year for which we have complete freight rate data).

A.6 Measuring market thinness: details

In order to construct a market thinness measure we need to take a stand on how to define a
“market”. We define the relevant market for each contract as the number of unique ships that
were within 5000 kilometers of the first port call on the contract, and were in this radius within

15 days on either side of the date the contract began.*

This measure proxies for market thinness by tracing out different regions across the earth,
with geographically isolated markets (such as the west coast of Australia) producing lower
measures than trading hubs (for example, ships located in a radius around Singapore). We
construct two versions of the market thinness variable, one where we count all ships nearby in
time and space, and one where we subset to only ships of the same type as the ship that was

eventually under contract, reflecting that charterers may require a specific ship type.>°

A.7 Identifying contract extensions and subleases

Extensions We identify two types of contract extensions in the contract data.

First, contracts occasionally have a built-in option to renew, where the charterer reserves the
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right to extend the contract. These are sometimes recorded directly in the raw data.
other cases, the raw variable recording the contract duration will include not just the duration

of the first contract, but also the duration of the subsequent contract if the charterer were to

4The distance of 5000 kilometers is approximately the distance from the west coast to the east coast of the US.
One limitation of this measure of market thickness is that we would like to also look at ships that were not
just traveling in this market, but also were close to the end of their contract. Unfortunately our data, which
only contain a subset of the total contracts, do not allow for this. Nevertheless, as we argue in the text, this
measure is likely to still be a good relative proxy for thin and more geographically isolated markets, versus
thicker markets.

0To construct ship type, we split ships into three bins based on their capacity (measured in twenty-feet
equivalent).

>Normally, the delivery location is the location where the shipowner is expected to deliver the ship to the
charterer. But if a contract is an extension of a previous contract with the same charterer that had an option to
renew, there is of course no delivery location required (since the charterer already has possession of the ship).
In such cases, instead of keeping the delivery location blank, Clarksons sometimes uses this variable to record
whether or not the contract is based on an exercise of a previous renewal option.
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exercise the option to renew.>> We combine both types of information in order to measure the

prevalence of such options: as mentioned in Section 4, these account for 3.3% of all contracts.

Second, even if a contract does not have a built-in option to renew (as is the case for the
vast majority of contracts), the shipowner and charterer can and often do agree to extend the
original contract. In that case, the extension will be recorded as a fresh contract in our contract

micro-data.

We identify extensions by looking for consecutive contracts agreed to by the same ship and
the same charterer, with only a small gap between the end of the original contract and the start
of the new one. Ideally, if our data had no measurement error, we should expect the extended
contract to begin as soon as the original contract ends. An example of this is depicted in Figure
A.4, where the original contract ends in period 2 and the new contract begins right after: in
such a case, as long as the charterer for the ship is the same, the new contract is very likely to

be an agreed upon extension of the original contract.

Figure A.4: Consecutive contracts with no gap

Prev. contract New contract
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But in practice, we often see consecutive contracts (for the ship with the same charterer), but
with a gap in between the two contracts: for example, the situation depicted in Figure A.5. In
such cases, provided the gap between the contract is fairly small, it is still quite likely that the
original contract was extended, but due to measurement error, the start date of the extended
contract is not recorded as beginning right after the end of the original contract. Of course if
the gap is sufficiently long, then it is more likely that the ship and/or charterer were searching
for interim matches in the period, before deciding on a brand-new contract, which is therefore

not just a continuation or renewal of the previous contract.

>2For example, a contract with a 6-month duration and an option to renew for another 6 months might be recorded
as having a duration of “6/6 months".
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Figure A.5: Consecutive contracts with a gap
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We therefore define a contract extension as any contract where the charterer is unchanged
from that of the most recent contract by the same ship, with at most a gap of four months
between them. Using this measure, we find that 42.6% of contracts in our data are extensions
of previous contracts. The share of extended contracts we identify is quite robust to this choice,

ranging from 40% - 43% as we vary the maximum gap from 1 to 6 months.

Subleases We identify subleases as contracts that satisfy the following criteria:

* The lease period is nested within the lease period of a previous contract for the same
ship. We impose this criterion since a charterer cannot sublet beyond the period for

which they have the ship.

* The charterer/lessee for the sublease must be different from that of the original lease

(since one cannot sublet to oneself).

For example, suppose a ship were originally contracted from January 2006 to July 2007, and
we subsequently see a contract for that same ship from January to July 2007, but to a different
charterer: in this case, we consider the second contract a sublease by the charterer of the

original contract.

A.8 Evidence on pro-cyclical contract duration from other leasing
markets

Figure 3 showed that contract duration is pro-cyclical not just for containerships, but also in
the leasing markets for bulk carriers and drilling rigs. We describe here how we document this

for other leasing markets.
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Bulk carriers Bulk carriers are primarily leased via “trip-charters" (i.e., for one single voyage
at a time), but about 10% of contracts for leasing bulk carriers are time-charter contracts where
the owner and charterer decide in advance on the contract duration, similar to the contracts
used for leasing container-ships (Brancaccio et al., 2020). We collected data on 10,629 bulk
leasing contracts from past issues of the Shipping Intelligence Weekly published by Clarksons,
covering the period from 2001 to 2016. We also collected monthly data on the Baltic Dry
Index (the most commonly used shipping freight rate index for bulk shipping markets), from
Clarksons’ Shipping Intelligence Network. In the second panel of Figure 3, we plot both the
average contract duration (smoothed using a local polynomial regression), as well as the Baltic

Dry Index.

Drilling rigs Data on leasing contracts for drilling rigs is obtained from Rigzone. We focus
on jackup rigs used to drill wells in the Gulf of Mexico during the 2000 - 2010 period, prior to
the Deepwater Horizon oil spill that triggered a drilling moratorium. Each contract specifies
both a “dayrate" and a duration (typically 2 - 4 months). Vreugdenhil (2023) contains a further
discussion of the industry and details of the dataset. Similar to Vreugdenhil (2023), we use
movements in the natural gas price to capture booms and busts, since wells drilled in the Gulf
of Mexico contain more natural gas than oil. In the last panel of Figure 3, we plot both the
average contract duration for rigs used in the Gulf of Mexico (again, smoothed using a local
polynomial regression), as well as the Henry Hub natural gas price, finding that new contract
duration is pro-cyclical. (Note that the estimation strategy in Vreugdenhil (2023) allows for
contract duration to potentially change with the cycle since the policy functions for contract

duration are a flexible function of the state.)

Anecdotal evidence from other markets There is anecdotal evidence to suggest that lease
duration is pro-cyclical in other markets as well, beyond the three markets for which we
have detailed data. In the leasing market for aircrafts, for example, the use of shorter leases
increased after the Covid-19 pandemic-induced collapse of demand for air travel (Yeomans,
2020). Commercial office lease lengths also follow a pro-cyclical pattern (Avison Young,

2023).
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A.9 Pro-cyclical contract duration: robustness checks

Table A.1 reports various regressions of contract duration on the logarithm of the time charter
index (to capture pro-cyclicality of new contract duration) and the logarithm of the number
of nearby ships (to account for the role of market thickness), as well as various controls. In
Column (1), we repeat the same regression reported in Column (3) of Table 3 (with ship size
fixed effects), but using our full sample of contracts between 2005 and 2015.°3 Column (1)
shows that the contract duration is highly pro-cyclical, consistent with the pattern depicted in
Figure 2, while contract duration decreases as the market becomes thicker. The coefficients
on both contract duration and the market thickness proxy are very similar to those reported in

Table 3.

In Column (2), we control for the contract dayrate (i.e., the daily price paid to the owner).
Longer contracts have a higher dayrate, but even after controlling for the contract dayrate,
duration is pro-cyclical, meaning that similarly priced contracts tend to have a longer duration
when signed during a boom. The correlation between contract duration and the time-charter
index remains very similar when we control for ship age (Column 3) and drop contracts signed
by newly built ships (Column 4). Across all specifications, the effect of market thickness on

contract duration is similar.

B Additional proofs and results

B.1 Model details

Details on match payoff in Equation 5 Here we provide more detail that a previously
unmatched, searching charterer’s expected match payoff is (1 — &8)(W; — cf) + BnE, UM
To see why, note that the charterer’s total payoff to a new 7-duration contract H,Ch‘” ', once

this contract duration has been chosen and under Nash bargaining, is defined by the surplus-

33In Table 3, we had used our estimation sample which excludes very large ships, newly built ships and contracts
longer than 8 years.
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Table A.1: Further evidence for pro-cyclical contract duration in containership leasing

(1) (2 (3) 4)
Log(duration) Log(duration) Log(duration) Log(duration)

Log(time charter index) 0.85*** 0.53*** 0.56*** 0.53***
(0.033) (0.066) (0.066) (0.068)
Log(# ships nearby, all types) -0.14*** -0.14*** -0.14** -0.16***
(0.034) (0.034) (0.034) (0.035)
Log(contract dayrate) 0.34%** 0.31%* 0.33**
(0.061) (0.061) (0.063)
Age of ship -0.01%** -0.01**
(0.003) (0.003)

1[mid-size ship] 0.08** -0.03 0.00 -0.01
(0.034) (0.039) (0.040) (0.041)
1[large-size ship] 0.39** 0.19** 0.20"** 0.17**
(0.039) (0.052) (0.052) (0.054)

Observations 3,303 3,298 3,298 3,096

Adjusted R? 0.185 0.192 0.196 0.181

Note: Standard errors in parentheses. In Column (2), we control for the contract dayrate. In Column (3), we
control for ship age. In Column (4), we additionally drop any leasing contracts by newly built ships.

splitting condition:
™" — BB U™ = (1-8)(Sic — €] + 0&r) (15)

Rearranging, I'Ifh“” =1-06)(Sir—cf+o0&)+ ﬁn,E,Uﬂf‘l’”. Denote S~t,r =St —c +0&.
Then, the charterer’s expected match payoff (before matching has taken place and the &; have

been drawn) is:

]ngﬂ (1 S)SM + anElUtC—{—ulm] =(1- 5)E§,,T§t,r + BnthUtc-i}—ullrl (16)

— (1-8)(W, — ) + B E U™ (17)

which proves the result. A similar result can be derived for the ship’s expected match payoff.
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B.2 Calibration of ship operating costs

Industry measures of container-ship “operating costs" borne by the shipowner include both
the crew cost, as well as maintenance and repair costs.>* According to Stopford (2009), the
total operating cost of a container-ship with capacity of 2,000 TEU (which is a median ship
in our sample) is around $5,000/day. A very similar number is reported by Greiner (2017),
who moreover finds that operating costs of containerships were fairly stable from year to year;

therefore, when calibrating ship operating costs, we assume they does not change over time.”>

When calibrating ¢ based on these industry estimates, we have to account for the fact that only
crew costs are true operating costs, in the sense that they are borne only when the ship is in
use (for example, when it is under lease to a charterer). By contrast, a shipowner will likely
have to incur costs of maintenance and repair even if the ship is idle, and therefore these are
better thought of as fixed costs that are borne regardless of whether the ship is in operation.
Since crew costs typically account for half of the total cost of operating a ship, we set ¢ to be
equal $2,500/day; this is consistent with typical industry estimates of the cost of crew ranging

from $2,000-$3,000/day.

B.3 Estimation of demand for shipping services

Here we provide more details on how we estimate demand (equation (12)) and construct the

demand state z;.

Variable construction We use our port call data to construct d;. To do so, we first calculate
how much cargo each ship carries each month, using information on idleness (i.e., the number
of days the ship is carrying cargo) and utilization (i.e., the total proportion of the ship’s
capacity that is utilized on non-idle days).’® We aggregate this across ships to calculate total

cargo volume transported by container-ships every month, or d;. Prices r; are proxied using

>4These are the only variable costs incurred by shipowners; other voyage expenses (such as bunker costs or port
charges) are borne by the charterer.

>Bunker costs may vary substantially over time as a function of fuel prices, but recall those are borne by the
charterer, not by the shipowner, and as such are not part of c. Instead, they are embedded in the v;.

%6See Appendix A.2 for how we measure utilization, and Appendix A.3 for how we measure idleness.

63



the time-charter rate index, which is the most granular price index available to us. Finally, the

demand shifters X; include a time trend, and an index for industrial production in the OECD.

Demand estimates Table B.1 reports demand estimates. Globally, demand for container-ship
services is estimated to be somewhat price-inelastic, with an average elasticity around -1.36.
Note that, at the route level, demand may be more elastic: Jeon (2022), who estimates demand
at the trade route level, finds an elasticity of -3.89. Demand also trends down over time, on

average.

Demand state We use the estimated demand coefficients from Table B.1 together with
equation (13) to construct the demand state z;. We then smooth z; by carrying out a local
polynomial regression using an Epanechnikov kernel and a bandwidth of 3 months. Our
results are very similar with other choices of bandwidth. Figure B.1 shows how z; (both the
raw measure, and the smoothed version we use in our structural model estimation) evolves
over time. As expected, demand is high in the period prior to the financial crisis, but collapses

during the Great Trade Collapse, before partially rebounding towards the end of 2010.

Table B.1: Estimates of demand for container-ship services

First-stage ~ 2SLS
Price Quantity

Price (timecharter rate) -0.30
(0.13)
Share of ships older than 20 years 1.07
(1.85)
Average ship age 3.88
(3.01)
Average ship size -0.02
(0.04)
Industrial Production Index (OECD) 4.02 1.34
(0.21) (0.54)
Time Trend -0.80 -0.17
(0.14) (0.08)
N 120 120
Demand elasticity (mean) -1.36

Standard errors in parentheses
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Figure B.1: Estimated demand shifter z,, before and after smoothing
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Transition process of demand state We model the evolution of the smoothed demand state,
7, as an AR(1) process with normally distributed shocks and a constant. Table B.2 shows the

parameter estimates.

Table B.2: Estimates of AR(1) transition process for demand state

Demand state

Lagged demand state 0.99
(0.01)
Constant 0.02
(0.03)
N 119
Standard deviation of demand shocks 0.07

Standard errors in parentheses

B.4 Algorithm for computing the equilibrium in the second stage

Overall, in the second stage of the estimation and for a fixed set of the parameters, we compute
the equilibrium of the model (and the resulting moments) via an algorithm that involves an
inner loop and an outer loop. In the outer loop we iterate over the ‘perceived’ state transitions
and recompute these transitions to be consistent with equilibrium behavior in the inner loop.

In the inner loop, given the current iteration of the state transitions, we compute the value

65



functions and duration choice. Then we simulate the transitions over the sample period, and

update the outer loop, continuing this process until the outer loop converges.

Note that we estimate the AR(1) process for the demand realization z; “offline” (since
it depends on global economic conditions and is therefore arguably exogenous to the

containership leasing market).
The detailed algorithm is as follows:

1. Initialize the algorithm at a guess of the outer loop ‘perceived’ transitions. Recall that
we are taking the process for the demand state z; as exogenous, and so we only need
to iterate over the process for 6;. We assume that the process for 6; is a deterministic
AR(1) process 6, = Yg 0+ ¥p,10;—1 Where ¥ o, Yp,1 are parameters that are updated in

the outer loop.>’

2. Given the current guess of the perceived transitions, compute five different value

. hi hipy - - o
functions (W, U™ U™P M M;™P) via value function iteration:

(a) Initialize these value functions as a set of nodes of the two aggregate states z;, 6;

(we compute intermediate values via linear interpolation).

(b) Using forward simulation, compute the (expected) match surplus at each node, for

each contract length {1,2, ..., Tax }-

* In this step, we aggregate over 30 forward simulations at each node. The
main source of randomness is the shocks in the AR(1) process for the demand

realizations.

(c) Compute the ex-ante surplus value at each node using the inclusive value formula:

W, = Gln< y exp(st,f/a)> + gypuler (18)

TE{1727~-~7Tmax}

>TThe process for the demand state z; does have normally distributed shocks with the standard deviation for
shocks estimated in the first-stage.
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(d) Update the value functions and return to (a) until the value functions converge

3. Simulate the industry evolution over the sample period, using the empirical demand

shock process.

4. Based on the simulated industry evolution, run a regression to update the perceived

transition parameters: 6; = Y5 0+ ¥9,16;—1.
5. Return to step 2. until the transition parameters ¥y o, ¥p,1 converge.

B.5 Simulated method of moments: additional details

We provide details here on how we construct the moments described in Section 6.2 and
estimate the parameters via simulated method of moments. The full set of moments we use

are listed in Table C.1.

Moment construction Several of our moments capture the cyclicality of key outcome
variables, such as mean contract duration during booms and during busts. A boom is defined
as any period where the demand state z exceeds its sample mean; any other period we classify

as a bust.

The duration, price and extension moments are all computed based on contract data. In order
to account for ship heterogeneity, we residualize each of these variables before computing the
moments. We residualize contract duration and price controlling for ship fixed effects. We

residualize extensions controlling for ship size (in TEU) and the square of ship size.>®

Weights We use a diagonal weighting matrix and choose the weights so that each of the
moments enter into the objective function with a similar scale, and to ensure that the model is
able to replicate the most important features of the micro-data. The weights on the dispersion
moments are set to 300. We set a weight of 100 on the moment measuring the difference in

the proportion of ships under contract in the boom vs. the bust, and a weight of 10 on mean

8Since extensions are relatively sparse (and many ships never have an extended contract), we chose not to control
for ship fixed effects when residualizing extensions, in order to avoid discarding a significant portion of the
data.
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utilization during the bust. We choose weights of 0.1 for the mean duration during the boom
vs. the bust as well as the mean duration in 2006-08 and 2009-10. All other moments enter

the objective function with a weight of 1.
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C Additional figures and tables

Figure C.1: Median contract duration for container-ship time-charter contracts and time-charter
index, 1999 - 2019

Duration (median) ~ --------- Charter rate

Duration (months)
Timecharter rate

2000m1 2010m1 2020m1

Figure C.2: Average contract duration for container-ship time-charter contracts and time-charter
index, 1999 - 2022
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Figure C.3: Contract price, long vs. short contracts
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Long -> duration greater than median duration of contracts signed that same year
Short -> duration shorter than median duration of contracts signed that same year

Figure C.4: Contract prices (residualized) across trade routes

Asia-US  —-———--- Asia-Europe US-Europe
North-South Intra-Asia Others
o |
w
0
[0}
Q
T o
D
o
)
w
2
© -
T T T T T T
2006m1 2008m1 2010m1 2012m1 2014m1 2016m

Time
Note: We regress the logarithm of the price on ship size, ship age and trade route fixed effects, and recover the

residuals. This figure plots the (smoothed) averages over time of these price residuals for each trade route. See
Appendix A.5 for how we identify which trade route each ship is on.
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Table C.1: Model fit: comparison of empirical and simulated moments

Simulated Empirical

Moments for share of ships under contract

Mean share of ships under contract, bust 0.957 0.949
Mean share of ships under contract, (boom-bust) 0.033 0.031
Std. dev. in share of ships under contract 0.023 0.022
Dispersion moments

Mean dispersion, 2006-08 0.157 0.156
Mean dispersion, 2009-10 0.174 0.178
Duration moments

Mean duration, bust 6.346 6.171
Mean duration, 2006-08 9.754 9.871
Mean duration, 2009-10 6.2 6.167
Mean duration, boom 9.427 9.388
Std. dev. of contract duration 4.107 4.061
Elasticity of duration w.r.t. market thickness -0.156 -0.15
Price moments

Mean price, bust 0.72 0.753
Mean price, boom 1.185 1.169
Extension moments

Prob. of extension, (boom - bust) -0.061 -0.039

Note: A boom is any period where the demand state z; exceeds its sample mean; any other period is a bust.
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