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Abstract

Supply-side climate policies — such as a drilling moratorium — aim to mitigate

climate change by keeping fossil fuels ‘in the ground’. I examine how capital reallocation

impedes the effectiveness of incomplete supply-side policies in the global offshore oil

and gas industry. I develop a framework of a decentralized capital market which extends

the location choice and dynamic matching literature to accommodate two-sided vertical

heterogeneity. Applying the framework to a novel dataset of contracts and projects, I

find that policy designs that do not account for capital reallocation are substantially less

effective, and there are significant gains from a global agreement.
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1 Introduction

Supply side climate policies — regulations that aim to keep fossil fuels ‘in the ground’ and are

often targeted at the $6.6 trillion global oil and gas industry — are a growing, and controversial,

solution to climate change.1 Advocates argue that these policies will aid the energy transition

away from fossil fuels. However, these regulations are typically incomplete because they only

cover a subset of the global market whereas drilling takes place in fields across the world. As

a result, a concern is that this uncoordinated action may cause leakage when economic activity

moves to locations or sectors with weaker regulation. Central to these questions, and of critical

importance due to the sheer scale of active and potential supply-side policies, is understanding

the exact channels by which leakage takes place.

In this paper I argue that incomplete supply-side policies in the oil and gas industry are particular

susceptible to leakage through a capital reallocation channel. Oil and gas wells are drilled by

movable physical capital: drilling rigs, which are leased by oil companies who match with

rigs in a decentralized global market. Here, local regulation decreases the profitability of local

capital inputs, which causes capital to reallocate to unregulated markets; this decreases the price

of inputs elsewhere and spurs production. Despite its emphasis in theoretical work, the capital

reallocation channel is fundamentally different to the leakage through a product market channel

that is considered in the existing empirical literature.2

Overall, this paper answers the questions: to what extent does capital reallocation reduce the

efficacy of supply-side regulation, and would more complete regulation improve outcomes? To

1For example, the Biden Administration has dramatically reduced the number of offshore drilling leases for sale
in the US market because of the climate effects of the oil and gas which will be produced and consumed from the
resulting wells (Friedman (2023)). In economics, supply-side climate policies have been analysed theoretically
in Harstad (2012), amongst others. Empirical work includes Covert and Kellogg (2023), Prest (2022), Prest
and Stock (2023). Across the world there are numerous similar proposed policies; a useful summary is detailed
in Ahlvik, Andersen, Hamang and Harding (2022). The valuation number counts both onshore and offshore
production in 2022. (https://www.ibisworld.com/global/market-size/global-oil-gas
-exploration-production/)

2For the theoretical literature see Baylis, Fullerton and Karney (2013). Leakage through a produce market channel
works because local regulation raises the relative price of tradeable goods, leading to increases in production and
emissions elsewhere. Examples in industries such as electricity and cement, include Abito, Knittel, Metaxoglou
and Trindade (2022), Fowlie and Reguant (2018), Fowlie, Reguant and Ryan (2016).
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Figure 1: Capital reallocation channels
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Note: This figure illustrates two channels for how capital reallocation generates leakage in the presence of two-
sided vertical heterogeneity. Here, there are two pieces of physical capital (in this paper, these are drilling rigs):
one high-efficiency and one low-efficiency. Initially there are two matches in location 1: the high-efficiency capital
is allocated to a complex project q1 and the low-efficiency capital is allocated to a simple project q0. Consider the
effects of a ban on drilling complex projects in location 1. The direct effect is to eliminate the match q1. However,
capital may reallocate to q2, where it is less well-matched within location 1. Or, it may reallocate across space to
a complex project in location 2.

do so I exploit an unusually detailed dataset of the universe of contracts and capital movements

in the global market for deepwater drilling rigs. Such data are notable because key information

(such as contracts between firms, prices, and allocations) on firm-to-firm markets are typically

confidential, which has made studying capital reallocation difficult more generally.3

I apply the data to a new empirical framework to study capital reallocation within and across

space. The framework extends the location choice and dynamic matching literature in industrial

organization to a setting with two-sided vertical heterogeneity in matches leading to sorting. I

illustrate two main channels that result from the interaction of spatial reallocation and sorting

in Figure 1. The framework also allows for extensive margin effects i.e. entry of projects and

exit of rigs from the global market. The results illustrate the central role of capital reallocation

in how proposed incomplete supply-side policies affect profits and carbon emissions, and the

3See e.g. Collard-Wexler and De Loecker (2015), Vreugdenhil (2023) who make similar points in alternative
contexts.
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gains to a global agreement.

The international offshore oil and gas industry is an archetypal global dirty industry with a

movable form of capital: drilling rigs. Offshore oil rigs are ‘marine vessels’ that are explicitly

designed to be easily transportable between locations. The industry is decentralized and oil

companies such as BP and Chevron do not own the capital required to drill oil and gas projects.

Instead, they contract out drilling to a rig owner.

The market is shaped by geographical space: oil field locations are situated across the world

and rig owners must choose the most profitable location for their capital. It is also shaped by

two-sided vertical heterogeneity in capital types and drilling projects: rigs can be ranked by

their efficiency (their on-board drilling technology) and oil and gas projects can be ranked by

their complexity. The match complementarities matter, with more efficient rigs sorting towards

more complex projects.4 Furthermore, different locations contain different types of projects.

I begin with an analysis of the 2010 US offshore drilling moratorium, which was active in

the months after the Deepwater Horizon/BP oil spill in the US Gulf of Mexico. The 2010

moratorium was a particularly stark example of incomplete regulation: while drilling was

temporarily halted in the US market, it was allowed to continue in other locations around the

world. The data show that rig owners responded to this difference in regulation by temporarily

relocating out of the US market to other locations where they could continue to drill.

Motivated by this illustrative example, I estimate a model of the global deepwater drilling

market using data on the positions and status (including information about contracts) of all

deepwater rigs worldwide between 2008-2016. In the model there are several spatial locations

worldwide (oil fields). Locations differ by demand (potential projects), as well as costs relating

to the operational expenditures of the rig owner (e.g. salaries and accommodation for the rig

crew). Within each location oil companies first choose whether to enter. These potential projects

then contact rigs and — given the types of available rigs and relative prices in the location —

4Note that in the paper I use the terms ‘capital’ and ‘rig’ interchangeably. Similarly, I use the terms ‘project’ and
‘well’ interchangeably.
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target the type of rig that best matches with their well type.5

In the supply side of the model, capital owners are forward-looking. Within a location they may

be contacted by an oil company to undertake a contract, in which case they will be unable to

match for the duration of the contract. If the rig is not currently in use, it can move to a new

location looking to match with a new project or stay in the current location. Key to this decision

is the quality of potential matches for each particular capital type in each location. The model

also allows for rigs to exit the global market and be scrapped.

I use the model to test several counterfactual policies. These center around proposed ‘supply-

side’ policies that ban complex wells. This counterfactual corresponds directly to drilling bans

in the industry like the 2010 US moratorium, which target deepwater wells that are usually

the most complex to drill but also tend produce the most hydrocarbons. It also serves as a

good proxy for proposed bans which correspond to sales of new offshore leases such as those

implemented by the Biden Administration.6

I first test the effects of a US-only ban. Leakage through the capital reallocation channel is

substantial and reduces the efficacy of regulation by -34.8 percent. Decomposing this into

two leakage channels, for every ton of carbon dioxide saved through banning complex wells,

within-location capital reallocation generates 0.16 more tons, while an additional 0.19 tons are

generated through reallocation across space to unregulated locations.7

A global agreement would eliminate leakage across space (but not within each location).

Overall it would be substantially more effective than a US-only ban with capital reallocation

5In equilibrium, the two-sided vertical heterogeneity in this market results in complex wells targeting high-
efficiency rigs and simple wells targeting low-efficiency rigs.

6Over time drilling has broadened to geological formations which are more difficult to drill. Therefore, these new
leases tend to correspond to more complex wells than existing leases. For a history of the industry and changes
in leasing patterns see Gramling and Freudenburg (2012).

7Although wells produce both oil and natural gas, which both result in carbon emissions once consumed, this
paper focuses only on the emissions from burning the oil content and not the natural gas content. The rationale
is that deepwater wells are predominately in fields where the hydrocarbon content is mainly oil. Furthermore,
the chemistry of burning natural gas results in relatively less emissions per energy unit than oil: https://ww
w.eia.gov/energyexplained/natural-gas/natural-gas-and-the-environment.php.
Overall, this implies the results are conservative.
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reducing the efficacy of the regulation by -10.8 percent. However, global coordinated

regulation may not be politically feasible. Therefore I also consider a coalition of richer

countries incorporating the US, Europe, Australia, and South America. This grouping would

also improve substantially the efficacy of the regulation: overall, capital reallocation limits the

reduction in emissions by -15.5 percent.

Finally, all these options would still be costly due to capital misallocation: incomplete

regulation generates misallocation across space, but complete regulation generates

misallocation primarily through its effect on sorting within locations. For example,

high-specification rigs who were previously matched to complex wells re-target and match to

wells with less complementarities.

1.1 Contributions and related literature

Overall, this paper makes three main contributions. The first is a new framework of location-

choice and matching in a decentralized capital market which allows for two-sided vertical

heterogeneity. This is a key difference to previous work using location choice models in, for

example, bulk shipping and taxis, where agents are relatively homogeneous (e.g. Frechette,

Lizzeri and Salz (2019), Buchholz (2022), Brancaccio, Kalouptsidi and Papageorgiou (2020)).

Accounting for two-sided vertical heterogeneity is essential to estimating leakage in this

setting. For example, as I show in the counterfactuals section, a model with homogeneous

agents would arrive at a loss of efficiency from capital reallocation at -70.5 percent in the

US-only counterfactual, around double the “true” value. Theoretically, as I detail further in the

counterfactuals, removing two-sided vertical heterogeneity could cause the model to under- or

over-predict leakage. However, a dominant effect is that a “homogeneous agents” model would

eliminate match quality considerations. As a result rigs and wells would be more substitutable

within and across locations, which would then incorrectly amplify leakage.

The second contribution is the analysis of a detailed dataset of firm-to-firm contracts,

movements, and projects, in a global capital market. As previously mentioned, these markets

are typically difficult to study because micro-data on contracts and allocations are often
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confidential. At the same time, many types of physical capital are traded in decentralized

markets (Gavazza (2016)). Moreover, movements of capital across space is thought to be a key

method of capital reallocation more broadly (Ramey and Shapiro (2021)). The data provide a

granular picture of the inner-workings of a real-world capital market.

The third contribution is a set of new findings about the efficacy of incomplete supply-side

regulation with capital reallocation in the global offshore oil and gas industry. This is connected

to several strands of literature. The first is the previously mentioned literature that investigates

how incomplete environmental regulation operates through an alternative production channel

for leakage.

A second strand of literature is in international trade where many papers investigate the

relationship between environmental regulation and the patterns of trade. Most notably, these

papers seek to test the ‘pollution haven hypothesis’ which is that stringent regulation in

developed countries like the US has caused industries to relocate to less regulated developing

countries (see Copeland and Taylor (2003) for a summary). The literature has detected effects

in ‘footloose’ industries using more aggregated data e.g. Ederington, Levinson and Minier

(2005). My results are consistent with this high-level finding as the offshore oil and gas

industry is extremely ‘footloose’ because capital is highly movable.8 Davis and Kahn (2010)

finds that used vehicles that fail emissions testing in California are more likely to be exported

to Mexico.

This contribution also builds on existing research into the oil and gas industry. For example, as

well as the papers already mentioned, Kellogg (2011), Asker, Collard-Wexler and De Loecker

(2019), Lewis (2019). The papers Corts (2008) and Corts and Singh (2004) work with a

more aggregated version of offshore rig data, and these data contain fewer covariates for the

projects undertaken under each contract. Vreugdenhil (2023) uses contract data in the US Gulf

of Mexico to study how booms and busts affect mismatch in the shallow water market; this

paper uses similar contract data but in the global deepwater floater market, focusing on capital

8The onshore oil and gas industry also uses drilling rigs which are designed to be movable across locations, and is
similarly the target of supply-side policies.
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reallocation across oil fields in response to regulation.

2 Market description and data

Offshore drilling is segmented into shallow water (< 500ft water depth) and deepwater drilling

(> 500ft water depth). I follow industry practice and treat these two segments as separate

markets due to the differences in capital types, geographical locations, and the scale of

engineering required to drill a well. In this paper I focus solely on the deepwater drilling

segment of the industry. Due to the extreme water depths deepwater wells are drilled by

‘floater’ drilling rigs (called either Semi-submersibles or Drillships) which float on the ocean’s

surface and are anchored at the well site. This is in contrast to the shallow water market detailed

in Vreugdenhil (2023) which uses Jackup rigs which extend their legs to the seabed.

Oil rigs are ships that move around the ocean drilling wells. Long-distance moves between

fields (for instance, from the US Gulf of Mexico to the North Sea) are usually undertaken using

a ‘dry-tow’ where the rig is manoeuvred onto a special ship and this ship then transports the rig.

Figure 2 shows an example of a deepwater oil rig moving using a dry tow.

The process of drilling a deepwater well and procuring a rig is as follows. Oil companies

like BP and Chevron lease areas of the seabed from national governments which provide them

the option to drill a well. Using geological surveys and (if available) information about other

existing wells in nearby leases, these oil companies decide whether to drill a well and determine

the potential well design. Since oil companies do not own the oil rigs they use to drill with, they

need to match with an appropriate drilling rig. Oil rigs are rented under simple dayrate contracts

for the time it takes to drill a well.9 After the well is completed (around 6 months) it is typically

connected to an undersea pipe for continuing extraction. The rig then moves on to its next job.

Drilling responsibilities are precisely delineated in this industry. While rig owners are

responsible for furnishing the rig in good working order, and paying expenses for the salaries

9An alternative contracting form is sometimes used in the industry: a turnkey contract where a rig is hired to drill
a set number of wells rather than for a period of time Corts and Singh (2004). I have additional data from IHS
on whether a contract is a turnkey or dayrate contract for the US market. In the period of time studied, for the
deepwater market, all of the contracts are dayrate contracts.
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and accommodation of the crew onboard the rig, they do not pay for any of the drilling costs of

materials. Instead, the oil company owns the well, is the beneficiary of selling the produced

hydrocarbons, and bears responsibility for drilling expenses like materials. The oil company

has a representative (called the ‘company man’) who lives on the rig and represents the oil

company’s interests.

Finally, the deepwater drilling industry is highly fragmented. Both the rig owner side and the

oil company side of the global market are unconcentrated. Therefore, I do not allow for either

side of the industry to exert market power in the model.

2.1 Data

The contract and status data comes from a proprietary dataset from Rigzone (an industry data

provider). The full dataset consists of the status of marketed drilling rigs worldwide 2000-

2016. I cut the data to only deepwater rigs (defined as those with a maximum drilling depth of

>500 feet). I observe the country and region that each drilling rig is currently in at each point

in time, and whether a rig is idle or under contract. If a rig is under contract then I observe

key covariates for the contract including price, duration, and the oil company who owns the

well. Contracts are almost always fixed price per day for a given duration and rarely contain

performance incentives.

The data sample covers the years 2008-2016 and Table 1 provides summary statistics. I choose

this period because dayrates are stable over the sample period (as documented in Online

Appendix Figure A-2). Similarly, the number of contracts drilled each year are relatively

stable.10 Motivated by this fact I model the market as in a steady-state equilibrium for this

sample period.

Although most rigs operate under relatively short-run contracts (around 6 months) and are

rented over time by many different oil companies, there are a small number of rigs that operate

continually under very long-term contracts. As a result, I delete rigs that operate under contracts

10For example, towards the start of sample in the oil price bust in 2009 the number of contracts was 161. When
the oil price returned to a boom in 2011, the total number of deepwater drilling contracts was 186.
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Figure 2: A deepwater drilling rig moving between locations

Note: This picture shows a deepwater drilling rig (called the ‘Deepwater Nautilus’) undergoing a dry tow between
locations. Source: https://2b1stconsulting.com/wp-content/uploads/2012/04/nautilus-dry-tow.jpg.

Table 1: Summary Statistics

Variable Units N Mean Std. Dev.

Daily Rig Activities Millions 1.75

Status Updates Unique status changes 4564

Contract Price Millions USD/day 1241 0.35 0.15

Contract Duration Days 1241 171 158

Prob. of Relocation Events 805 0.43 0.25

Table 2: Summary Statistics: Heterogeneity

Capital Type (Efficiency)

Low Mid High

Prob. of Relocation 0.29 0.35 0.68

Utilization 0.86 0.86 0.89

Dayrate 0.3 0.34 0.43

Average Match: Well Complexity 1.0 2.4 3.6
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of duration greater than two years. In total I have 4564 ‘status updates’ for deepwater rigs, which

amount to 1.75 million daily rig activities. I provide more detail about these status updates and

the data cleaning steps in Appendix B.

Rig heterogeneity As is the convention in the industry, rigs can be ranked by their maximum

drilling depth which is a proxy for capital efficiency since it is highly correlated with onboard

technology, age, and other factors. I aggregate capital heterogeneity into three types by

maximum drilling depth and call these types ‘low’, ‘medium’ and ‘high’ specification rigs.

Table 2 describes some ways that these rig differences matter. High-specification rigs fetch

higher prices than other rig types and also tend to relocate more frequently. However, all capital

types have relatively similar levels of utilization.

Well heterogeneity Wells can be ranked in terms of how complex they are to drill using an

engineering model called the ‘mechanical risk index’. This index takes well covariates such

as depth and bottomhole pressure, and ranks wells on a one-dimensional index of drilling

complexity. I detail steps taken build this metric in Appendix B.3.3.

As is apparent in Table 2, more efficient rigs sort towards more complex wells. I describe these

patterns in more detail in Section 3. In addition, more complex wells tend to produce more oil

(and therefore more emissions when this oil is consumed). I detail these patterns, and the steps

to map production into emissions, in Appendix A.

Location heterogeneity I aggregate capital locations into eight large regions across the world;

within these regions the main oil fields are relatively close to each other.

3 Descriptive analysis of the deepwater rig market

To motivate the model I make two observations of the raw data.
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Figure 3: Effects of the 2010 moratorium on the market for deepwater drilling rigs
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(c) Exit Destinations

Note: For part (a) and (b) I indicate when the moratorium started. However, I do not plot where the moratorium
ended since the exact date is hard to determine: although the moratorium officially ended in October 2010, a
‘defacto’ moratorium persisted where no permits were awarded for new wells until February 2011. The permit
approval slowdown ended around mid-2011. Part (c) shows the destinations of the rigs that exited after the 2010
moratorium.
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Observation 1: Rigs respond to differences in regulation by changing location.

To make this observation, I analyze the effects of the 2010 offshore drilling moratorium as a

case study.11 On April 20 the Macondo prospect that the Deepwater Horizon oil rig was drilling

blew out, discharging oil into the Gulf of Mexico in the largest oil spill in US history.12 On

April 29 the Obama Administration announced it would issue no new drilling permits until an

investigation was completed and I date the start of the moratorium from this date. Later, a

continuation of this moratorium was introduced in May 30 2010. Although the moratorium

officially ended in October 2010 a ‘defacto moratorium’ persisted until at least February 2011

with no new drilling permits awarded (Broder and Krauss (2011)).

Figure 3(a) plots the short-run effects of the moratorium focusing on rig utilization (the

proportion of rigs that are actively drilling). The moratorium had a dramatic effect, causing

utilization to fall from around 95% to 20% only in the US market (it is difficult to safely stop

all drilling and so some rigs continued to drill). However, as is documented by the red line,

utilization in other locations remained relatively high, providing strong incentives for capital to

relocate. Over time, through rig exit (as well as a slow return of permitting), utilization climbed

to its pre-moratorium level.

Figure 3(b) plots the cumulative change in the number of drilling rigs in the Gulf of Mexico.

After the moratorium is implemented rigs quickly exit for other oil fields not under a

moratorium where they will be more fully utilized, and I document the exact locations in Figure

3(c) . When the moratorium is lifted, rigs reenter the region. Overall, this shows that rigs are

responsive to differences in regulation across markets.13

11Note that my main analysis incorporates information of all movements of rigs worldwide over a longer period of
time to test the effects of regulation.

12Deepwater Horizon was owned by Transocean and was drilling a well for BP.
13Market analysts also predicted rig relocation as a consequence of the moratorium. For example, in May 2010:

“[The rigs] cost 500,000 to 1 million a day to lease, says Michael King of FMC Technologies in Houston. He
presumes many of their owners will break their contracts and ship them to places with ongoing demand. "There
are oil fields off West Africa, off Brazil and in the North Sea," he said. “That might be the most efficient use of a
rig over the next six months.” (Ludden (2010)).
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Figure 4: Sorting patterns for deepwater rig efficiency vs project complexity
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(a) Average match for each rig type
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(b) Matching range (5% to 95%)

Note: For both figures, the x-axis is the rig efficiency ranking (where rig efficiency is proxied for by the maximum
drilling depth) and the y-axis is the project complexity ranking (the ‘mechanical risk index’ which is an engineering
model used in the industry that maps well covariates into a one-dimensional index for how difficult the well is to
drill). Each point on the x-axis corresponds to a particular maximum drilling depth. These maximum drilling
depths are typically given as round-number increments (e.g. maximum drilling depth of 6000 feet) and so each
point on the graph corresponds to all the projects undertaken by the many rigs which share a particular drilling
depth. Figure (a) presents positive sorting patterns in terms of the average match for each rig type. Figure (b)
presents positive sorting patterns in terms of the entire distribution of projects that rigs match to.
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Observation 2: Positive sorting patterns suggest that match complementarities matter.

Figure 4 illustrates the sorting patterns between capital (rigs) and projects (wells) in the US

market. Recall that we can rank wells vertically by their complexity using an engineering

model called the ‘mechanical risk index’ and we can also vertically rank rigs by their efficiency

(proxied by their maximum drilling depth). Figure 4 illustrates that more complex projects tend

to match with more efficient rigs, both on average and over the entire distribution of project

types.14 These pictures suggest that match complementarities matter.

Where do these match complementarities come from in this industry? Broadly, more efficient

rigs — through their better on-board technology — generate cost efficiencies once allocated to

complex wells. For example, a complex well may involve drilling around a difficult geological

formation, which involves a greater probability of risks like a “stuck pipe”. The better

technology of efficient rigs allows them to drill these difficult formations, and more readily

deal with unexpected events as they occur. I further discuss complementarities in Section 6.

Different markets have different distributions of well complexity, which make them suitable for

relocating different types of rigs. For example, the European market (the North Sea) is known

to have relatively simple projects. Therefore, in the empirical distribution of rigs across the

world, this region has proportionally more lower-efficiency rigs.

4 Model

4.1 Setup

There are locations l ∈ L across the world, each of which corresponds to an oil field. Agents

are projects (wells) x and capital (rigs) y. Capital is differentiated by efficiency y ∈ Y =

{low,mid,high} and projects are differentiated by their complexity x. The model is dynamic

with one period equal to one month. Agents have the discount factor β .

To keep notation simple I suppress time, capital, and project-specific subscripts. Instead, I write

the model components as just a function of the types of each capital and project (e.g. x instead

of x(i) for project i, y instead of y( j) for rig j) and explicitly discuss any cases that deviate from

14These sorting patterns are also apparent for shallow-water rigs Vreugdenhil (2023).

15



this convention.

In order to drill a project, a project owner needs to match with capital. Denote the number of

type-y rigs in location l by nl,y. Each rig has a queue (a ‘backlog’) of projects and if the queue

is sufficiently short — specifically, if the number of contracted months in the backlog is below a

critical value tbacklog — then the rig is ‘available to match’.15 The timing in each period within

each location l is as follows:

1. Project entry in each location The number of new potential projects in each period is

given by a draw from a Poisson distribution with a location-specific mean λl . The type of

each of these potential projects (pre-entry) is characterized by an independent draw from

a distribution x ∼ fl,x of project complexity. If a potential project chooses to enter it pays

an entry cost centry.

2. Targeting Each potential project that enters knows its type x and chooses which kind of

rig y to match with (‘target’).

3. Matching Within a period, potential projects match sequentially in the (random) order in

which they are drawn with the capital type that they choose to target. If there are no more

available rigs then unmatched potential projects immediately exit.16 Otherwise, a match

is formed.

4. Production If a potential project successfully matches with capital the τ periods of the

contract are added to the capital’s backlog. The total per-period payoff is given by mx,y −
cl,y for each of the τ periods of the contract, where the function mx,y is the match value

and cl,y is a location-specific and capital type-specific cost. As I explain further in the

15The constraint that projects will refuse to match if the backlog is too long arises mainly from oil company
preferences; rig owners tend to prefer longer backlogs since it reduces the risk of a rig not being utilized. In fact,
it is common for rig owners to actively advertise their deepwater rig backlogs to shareholders in annual reports
as a positive signal about their firm’s financial health.

16The immediate exit of unmatched potential projects is not an assumption but rather optimal behavior given the
setup of the problem. Specifically, if a potential project is unmatched it implies that there is not enough available
capital (i.e. matching with any capital would produce a backlog longer than tbacklog). But then this implies that
waiting an additional period for capital to become available would require waiting longer than tbacklog to drill a
well.
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Estimation section, the matching function also incorporates that some matches cannot

occur due to engineering constraints. Prices are determined by Nash bargaining.

5. Relocations Capital not currently under contract can either stay in the current location

l, or to move to a new location l′. Moving to a different location incurs a cost that is

dependent on distance between locations dl,l′ but not capital type.17

As well, I include an extensive margin response for the total number of rigs in the global market.

Discussion of key assumptions/properties I now discuss four aspects of the model setup.

First, I assume that agents make their decisions based on long-run averages in the market.

Specifically, for potential projects, they use the long run average probability that a rig type is at

the capacity constraint to determine rig selection and prices, and rigs use long-run averages for

the probability of matching and prices in their location choice.

One justification for the above assumption — as previously mentioned in Section 2.1 — is that

the deepwater market is relatively stable in the sample period. However, this assumption is

still in contrast to an alternative set-up where agents can condition their behavior on a more

transient state of the market (such as exactly how many other potential projects entered in the

same period, or the exact number of months in the backlog of every rig). The benefit of this

assumption is computational; allowing agents to condition their behavior on a more transient

state of the market would add substantial complexity to the decisions of potential projects and

capital, and generate a large state space for capital’s dynamic decisions, which would result in

a curse of dimensionality. In addition, this assumption is arguably realistic for this market. For

example, according to my data provider, contracts are eventually fully reported but there is often

a delay, so the data are somewhat ‘stale’ and the current state of the marketplace is unknown at

any point in time.

The second notable assumption is that agents can target their best match, and I do not allow

for search frictions. Instead, I micro-found the matching process in the model through a

17Typically long-distance moves of the rigs are accomplished using tow boats, not the rigs’ internal engines, and
so I do not allow moving costs to depend on the capital type y.
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queueing simulation that is tailored to the institutional details of the industry. If there is an

available rig and it is being targeted by a potential project, then these agents will meet. Capital

unemployment is generated solely due to the Poisson draws in demand: several successive low

draws may result in rig unemployment. The ‘no search frictions’ assumption is different to

previous work in other markets like taxis, which involve matching with much larger numbers

of agents searching on both sides of the market, which leads to coordination frictions. Unlike

these markets, the scale of the deepwater rig market is much smaller and so matching arguably

involves fewer opportunities for frictions.

Third, I assume that capital receives a match only after entering a location. I experimented with

an alternative assumption where rigs start the period matched, but I found numerically that it

made little difference to rigs’ location choice decision. This is because matches are relatively

short-term compared to the overall time that a rig spends within each location.

Fourth, a property of the model is that agents do not reject matches. This is not an assumption.

Rather, it follows without loss of generality from the setup that (i) potential projects make

an entry decision and (ii) potential projects can direct their search towards their best match.

Therefore, potential projects will only enter if the eventual match will be accepted. This

property is shared with the broader literature on directed search e.g. Moen (1997).

4.2 Demand: How projects match with capital

I first discuss rig choices and entry choices for potential projects, which correspond to the two

choices that these potential projects make in the model.

After entering, the ex-ante payoff to targeting capital of type y is:

Π
pro ject
l,x,y = qpro ject

l,y

( τ−1

∑
s=0

β
s(mx,y − pl,x,y)+ εy︸ ︷︷ ︸

Match value with type y capital

)
(1)

The term qpro ject
l,y is the long-run probability of matching capital type-y in location l (and 1−

qpro ject
l,y is the probability that capital is at its capacity constraint), mx,y is the value of a match
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between project type x and capital type y, and εy is an idiosyncratic error for each capital type y

distributed i.i.d. extreme value. Note that I am suppressing individual project subscripts, but the

εy is drawn independently for each searching project (as well as for each rig type y). A potential

project contacts the capital type that offers it the highest expected value: maxy
{

Π
pro ject
l,x,y

}
.18

Potential projects will enter if the value of entering is greater than the entry cost centry

(where the centry embeds the cost of, for example the costs to draw up a detailed well plan):

argmaxk
{

Π
pro ject
l,x,k

}
≥ centry.

Integrating over demand fl,x the share of potential wells that target capital type y is:

sl,y =
∫

1
[
y = argmax

k

{
Π

pro ject
l,x,k

}]
1[argmax

k

{
Π

pro ject
l,x,k

}
≥ centry] fl,xdx (2)

Since agents can target their best match and choose whether to enter, this implies that no

matches are rejected (otherwise the project would have a negative payoff from entering the

market).

I compute the probability of matching for projects and capital qpro ject
l,y , qcapital

l,y that results from

the above targeting decision using a matching simulation. I briefly discuss this simulation here

and leave a more detailed description to Appendix D.2. Overall, I simulate a queue, for each rig

type y. If the match is at the front of the queue, then it takes the contract duration τ to complete

the match. For each rig type queue, there are nl,y rigs that projects can be completed at, so there

are nl,ytbacklog/τ places in the queue. The ‘queuing discipline’ is first-in-first-out.

18Note that this rig selection choice implicitly assumes that projects will immediately match with rigs if the rig is
not at a capacity constraint. I experimented with a more complicated model for rig selection and prices where
potential projects discount rig types based on the average delay due to backlog. The results were relatively
unchanged and so I choose to not incorporate this more complicated feature.
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4.3 Supply: Location decision

The location decision of an unemployed piece of capital of type y is to either stay in the same

location l, or to choose to move to a different oil field l′. Mathematically, this choice is:

Ul,y = max
ß

max
l′ ̸=l

{
−cddl,l′ +βVl′,y +σεεl′︸ ︷︷ ︸

Value of moving to l′

}
, bstay +βVl,y +σεεl︸ ︷︷ ︸

Value to staying in location l

™
(3)

Here the first term is the value of moving from location l to l′, where cd is the per-mile transport

cost, dl,l′ is the distance, εl′ is the idiosyncratic logit error, and σε is the scale parameter

of the errors. Although I am suppressing rig-specific subscripts, the logit draws are drawn

independently for each individual rig as well as location. The second term is the value of staying

put in location l. In this term, bstay is a parameter that reflects unobserved benefits of remaining

unmatched in the same location such as labor savings. Equation (3) delivers multinomial logit

conditional choice probabilities for moving location which I later use for estimation; I provide

more details about the exact form of these equations in Appendix D.1.

Using the location decision in Equation (3) I can write the ex-ante value function for

unemployed capital (that is, the value function before the εl shocks are drawn):

Ul,y = σε log

(
∑
l′ ̸=l

exp
Å−cddl,l′ +βVl′,y

σε

ã
+ exp

Å
bstay +βVl,y

σε

ã)
+σεγ

euler (4)

where γeuler is Euler’s constant.

The value function Vl,y (the value of being in location l before matching has taken place) is

given by:

Vl,y = qcapital
l,y

( τ−1

∑
s=0

β
s
δl,y +σεγ

euler +β
τVl,y︸ ︷︷ ︸

Expected value to matching for the rig

)
+(1−qcapital

l,y )Ul,y (5)

Here, qcapital
l,y is the long-run average probability that capital of type y matches with a well

in location l. The expected value to the rig of being in a contract in each period is δl,y =
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p̄l,y − cl,y + ξl,y, where ξl,y accounts for unobserved cost shocks.19 Note that I do not allow

for unobserved demand shocks. This is mainly due to industry-specific reasons which suggest

that such shocks are less important: for instance, as previously mentioned, the total number of

contracts per year over the sample period are relatively stable.

4.4 Supply: extensive margin

Unemployed capital will not exit if the value of remaining unemployed in a location Ul,y is

greater than the value of exit (scrapping the rig):

Ul,y ≥ bscrap (6)

While the total number of rigs is relatively stable over the sample period, this channel is most

important for the counterfactuals, where demand is reduced which may result in capital exit.

Note that, while it would be possible to also incorporate a capital entry margin (at the cost of

more computational complexity) I do not do so for two reasons. First, time to build which is

several years for a deepwater rig (Kaiser and Snyder (2013)), makes it difficult for the market to

respond (at least in the medium term) to policy changes. Second, the counterfactuals considered

tend to reduce the lifetime present value of an active rig, and so it is potential rig exit that is the

key margin for drilling bans.

4.5 Prices

Since prices are determined by Nash bargaining, the price pl,x,y of an (x,y) match in location l

is determined by:

argmax
p

[
τ−1

∑
s=0

β
s[mx,y − p]−β (1−Pexit)Wl,x,y

]1−η[
τ−1

∑
s=0

β
s
δl,y +β

τVl,y −Ul,y

]η

(7)

19This formulation is useful later in estimation when I parameterize cl,y. Note that although the costs are assumed
to be fixed over the period of the sample, the model could be extended to accommodate time-varying cost shocks
by separately estimating the model year-by-year. But this would introduce an additional computational burden.
Furthermore, if there were large time-varying cost shocks, they would bias upwards the estimate of σε , but as I
later document this value is relatively small.
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Recall that prices are embedded in δl,y = p− cl,y + ξl,y. Here τ is the length of a contract in

months, Vl,y is the ex-ante value of available capital, Ul,y is the value of unemployed capital, η

is the Nash bargaining parameter, and Pexit is an exit shock for unmatched potential projects.

So, 1−Pexit is the probability that the unmatched potential project does not exit and continues

to search if the match is rejected. Note that this event occurs off the equilibrium path since all

matches are accepted.

The value β (1−Pexit)Wl,x,y is the project’s outside option. For simplicity I assume that if a

project rejects a match then it will target the same type of capital and so Wl,x,y has a capital y

subscript as well as the location l. The value Wl,x,y is given as:

Wl,x,y = qpro ject
l,y

τ−1

∑
s=0

β
s(mx,y − pl,x,y) (8)

which is the probability that the capital type is not at its capacity constraint, multiplied by the

payoff to the well of matching. Note that if the capital is at its capacity constraint (which

happens with probability 1− qpro ject
l,y ) then the project exits immediately since the backlog is

too long, receiving a payoff of 0, and so this term disappears.

4.6 Quantifying oil production and emissions

I provide an overview here of how matches in the model are mapped into changes in global

oil production and emissions, with the details presented in Appendix A. Wells produce both oil

and natural gas in different quantities, and both result in carbon emissions once burned. This

paper focuses only on emissions from burning the oil content. The reason is that deepwater

fields predominately produce oil, and furthermore burning oil produces a far greater magnitude

of emissions than burning the equivalent energy unit of natural gas.20

The complexity of an individual project is mapped into a production volume of oil using the

empirical relationship that more complex projects tend to produce more oil. Then, given the

equilibrium number and types of matches predicted by the model in each location, the model

20See, e.g. https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the
-environment.php.
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predicts a total volume of oil produced in the deepwater market.

I then convert changes in oil production in the deepwater market into a change in carbon

emissions globally in two steps. As I explain further in Appendix A, I first convert the change

in supply from the deepwater market to an equilibrium global change in oil produced and

consumed, incorporating demand responses as well as supply responses from non-deepwater

fields. Second, I convert this global change in output to carbon emissions by scaling by the

EPA’s Greenhouse Gases Equivalencies Calculator.

4.7 Equilibrium

I formally define the equilibrium here. Note that rigs and project owners only internalize

the private benefits and costs of their location choices and not the emissions produced once

the hydrocarbons are consumed. In Appendix F I provide an example of the role of two-

sided vertical heterogeneity in determining the within-location equilibrium response to across-

location entry and exit of capital.

Equilibrium is defined as a set of prices pl,x,y, matching probabilities qpro ject
l,y and qcapital

l,y , and a

spatial capital distribution {nl,y}l∈L,y∈{low,mid,high}, that satisfies:

1. Demand Side Equilibrium Optimal entry and targeting decisions by potential projects —

given equilibrium prices and the equilibrium total number of rigs nl,y in each location —

that satisfies Equations (1) - (2) and the queuing model detailed in Appendix D.2.

2. Supply Side Equilibrium Optimal location decision by rigs subject to the equilibrium

average prices p̄l,y in each location and the equilibrium probability of matching qcapital
l,y in

each location, resulting in a spatial distribution of capital satisfying Equations (3) - (5).

3. Extensive margin for the supply side governed by Equation (6).

4. Prices pl,x,y determined by Nash bargaining, defined in Equations (7) and (8).

5. Expectations of agents consistent with the long-run equilibrium.
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5 Estimating the model

5.1 Overview

I provide an overview of the parametric assumptions used, and whether the parameters are

estimated or calibrated, in Table 3.

Justification for the calibrated values The discount factor is not identified, as is typically

the case in dynamic discrete choice models: Magnac and Thesmar (2002). So, I set the monthly

discount factor β = 0.99. I calibrate the contract length τ = 6 which is approximately the mean

contract length in the data.

I calibrate the maximum backlog in a queue to tbacklog = 12 months, which is around the 75th

percentile of backlog in the deepwater US market.21 What this means is that there is at most one

current project that the rig is working on, which takes six months, and another project sitting in

the queue, which also takes six months. (In the queueing literature the backlog is often written

as the number of spots for matches that are not currently being processed i.e. tbacklog = 6; I

write the backlog incorporating the existing match here for expositional clarity to a broader

economics audience.)

I also calibrate the moving cost parameter cd . Long-range capital movements are usually

accomplished by a ‘dry tow’, which means that the capital is loaded onto a ship and moved

to the new location. The speed of a dry tow is typically 14 knots (16.11 miles per hour) (Golson

(2014)). Since rigs are moved by the similar tow boats, and the cost of towing is proportional

to the distance, I convert the distance between fields by the tow speed and calibrate the per-day

cost of towing as cd = $0.25 million.22

I need to calibrate the bargaining parameter and I assume that the parties split the match surplus

21In my dataset the US market is the only market where backlog data are systematically available.
22I choose this value based on the assumed dayrate for a heavy lift marine transport ship undertaking a ‘wet tow’

suggested by industry practitioners in Terpstra, Hellingaand and Leerdam (2013). While a ‘dry tow’ may be
more expensive than a ‘wet tow’ since it is faster, industry practitioners suggest that there are also substantial
other cost savings to using a dry tow (Dockwise (2012)) and so I assume that overall these values are comparable.
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Table 3: Overview of how the parameters are computed

Object Notation Parameterization Param. Method

Calibrated params. β ,τ, tmax,η Calibrated

Pexit ,cd ,centry,bscrap

Costs cl,y cl,y = γ p̄l,y γ Estimate step 1

Remain in loc. bstay bstay Estimate step 1

Preference shock σε Logit σε Estimate step 1

Demand distribution fl,x Log-normal µl,σl Estimate step 2

Demand draws Dl Poisson dist. λl Estimate step 2

Match value∗ mx,y m0,y +m1,yx m0,y,m1,y Estimate step 2

Note:∗ The match value mx,y is also constrained so that low-specification and mid-specification rigs can only match

with the 99% empirical quantile of the well matches of that rig type. This captures engineering constraints that

may make some lower-efficiency rig and high-complexity well matches infeasible in counterfactuals.

equally and set this to η = 0.5.23 In addition I need to calibrate the exogenous exit rate in the

well’s outside option. This is difficult, as previously discussed, it is optimal for all matches to

be accepted and so ‘taking the outside option’ occurs off the equilibrium path. I choose a value

of Pexit = 0.5.24

I calibrate the potential project entry cost centry to $13.15 million USD using Hossain (2015).25

I calibrate the scrap value bscrap = $5 million USD using the figure from Kaiser and Snyder

(2013). (Moreover, when discussing this market, this survey also mentions “Very few drilling

contractors scrap rigs.”, which would make it difficult to estimate this value directly rather than

calibrating it).

Discussion of parametric assumptions I assume that the distribution of complexity for new

wells fl,x is given by a log-normal distribution with mean µl and standard deviation σl .

23This is somewhat close to the δ = 0.37 used in the shallow water analysis in Vreugdenhil (2023).
24Brancaccio, Kalouptsidi and Papageorgiou (2020) also need to calibrate a similar value for their ‘exporter

survival rate’.
25Hossain (2015) puts pre-spud drilling costs at around 18% of total expenses. Using this number, and setting other

expenses to the mean total payment to a rig, which is $59.9 million, I calibrate the entry cost as (0.18/0.82)×
59.9 = 13.15 million dollars. The paper Vreugdenhil (2023) follows a similar procedure using numbers in the
shallow water market.
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Estimating a separate cost for each capital type in each location would require estimating 18

different costs. However, given there are several markets where the number of relocations for a

given capital type are small, I choose to parameterize costs in the following way: cl,y = γ p̄l,y.

Here, the term γ ∈ [0,1] is a scale parameter that relates costs to the average price in each

location. Note that 1− γ is the capital’s markup and so a low γ corresponds to a high markup

and a high γ corresponds to a low markup. One objection to this parameterization is that it may

be inconsistent with Nash bargaining, because prices also incorporate outside options which

may vary with demand in each location or by rig type. To address this concern I resimulate the

entire equilibrium of the baseline model at the estimated demand and supply parameters. I then

regress model-predicted average prices by rig-location on a constant and the cost parameters.

The resulting R2 =0.92 which illustrates that most of the variation in prices is driven by differing

costs, and not outside options.26

I assume that the match value is given by the functional form mx,y =m0,y+m1,yx where m0,y and

m1,y are parameters that depend on the type of rig y. Importantly, the parameter m1,y indexes

the complementarities between applying a type-y rig to a type-x well. I further discuss these

complementarities in the estimation results (Section 6). In addition to this affine functional

form, I also impose the engineering constraint that low-specification and mid-specification rigs

cannot match with wells of complexity above the 99% empirical quantile of that rig type. This

is to capture engineering constraints that may inhibit some well and rig matches. The overall

effect is that this restriction makes the model more conservative about leakage predictions, since

it prevents particular wells reallocating to particular rigs.

I now discuss the two estimation steps in more detail. I only use data in estimation in the period

outside the US 2010 drilling moratorium.

26This may be unsurprising when considering that rigs are incentivized to move to locations with high markups.
This then tends to make outside options across locations more equal in equilibrium. For example, if demand was
very high in one location such that outside options were also high, rigs would enter this location, endogenously
reducing the outside option.
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5.2 Step 1: Computing supply side parameters

This section is similar in spirit to the estimation strategy in Brancaccio, Kalouptsidi and

Papageorgiou (2020) except that I depart from it to allow for unobserved cost shocks. To

do so I split estimation into two sub-steps. In Substep 1.1 I recover δl,y, σε , and bstay using

the observed choice probabilities of moving between locations. In Substep 1.2 I use an

instrumental variables strategy to compute the markup γ — which can be used to back out cl,y

— in the presence of unobserved cost shocks which may generate price endogeneity.

Substep 1.1: I estimate the parameters in this substep by fitting the empirical location choice

probabilities for each rig type using maximum likelihood. I provide more information about

how I compute the value functions and the exact algorithm for estimation in Appendix D.1. I

provide a more formal proof of identification in Appendix E.1.

Overall, the identification intuition is that bstay is identified by the probability of an available rig

remaining in the same location. The δl,y parameters are identified by matching the probability

of a single location choice per location (e.g. the choice probability of a move from the Asia to

Africa for high-specification rigs would identify δAsia,high). In one location (the US market) I

have information on deepwater rig operational expenses from Kaiser and Snyder (2013), and so

I incorporate this information into estimation by calibrating δUS,y based on this.

Finally, given the other parameters, there are many remaining location choice probabilities

to pin down σε . Intuitively, the model matches these choices ‘on average’, with higher σε

corresponding to choice probabilities that generate a more ‘spread out’ stationary distribution

of rigs in each location. Lower values of σε yield location choices where rigs predominately

choose locations with the highest markups (as well as the highest probability of matching).

Substep 1.2: Using the parameterization of costs in terms of a markup over the average price

cl,y = γ p̄l,y, I then use the values of δl,y from Substep 1.1 to estimate γ using the equation

δl,y = (1−γ)p̄l,y+ξl,y. Since prices may be endogeneous and a function of the unobserved cost

shocks ξl,y I use an instrumental variables strategy.
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Specifically, I instrument prices with a demand shifter: unexploited oil and gas reserves by

location and water depth.27 The intuition for why this instrument is independent of the rig cost

shocks ξ jt stems from industry norms around the contractual division of responsibility between

oil companies and rig owners detailed in Section 2.28

As a result, even though the volume of hydrocarbons may be correlated with underlying

geological conditions that make the well more costly to drill, this is not a cost that would affect

ξ jt . Rather, the cost shocks in ξ jt may come from, for example, local labor market conditions

that make workers more costly to hire; these are unlikely to be correlated with the geology of

deepwater oil and gas fields. For similar reasons, this instrument also satisfies the exclusion

restriction (i.e. does not directly enter the utility function of the rig): rig owners do not directly

benefit from selling the hydrocarbons the well produces.

5.3 Step 2: Computing the match value and demand

A key challenge is that, although I observe contracts (price, duration, and the parties) in each

location, I only have matched contract-project data where I see the exact well type drilled

in the US market. For non-US markets, I therefore employ a strategy of estimating demand

from the price/contract data alone (recall that ‘demand’ is the underlying distribution of wells).

Intuitively, this strategy requires knowing the mapping between prices and well types so the

distribution of prices identifies the underlying distribution of well types. Therefore, I spilt

Step 2 into two substeps: I first retrieve the parameters that underlie the match value function

(as well as demand) in the US market using simulated method of moments. Then, I use the

estimated match value parameters and data on prices and utilization to estimate the equilibrium

distribution of potential projects in the other markets using simulated method of moments.

27I use data from the ‘Global Oil and Gas Extraction Tracker’ from the Global Energy Monitor:
https://globalenergymonitor.org/projects/global-oil-gas-extraction-tracker/. Within each location, I convert gas
reserves to ‘barrels of oil equivalent’. I then split up the total reserves into three quantiles of water depth and
compute the share of unexploited reserves below the maximum of each water depth quantile.

28Specifically, rig owners are responsible for rig operating expenses like wages for the crew; oil companies pay for
well-related drilling expenses but own the hydrocarbons the well produces.
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Moments and identification The six match value parameters ({m0,y,m1,y}y∈{low,mid,high}) are

determined by two sets of moments constructed using data from the US market. First, I include

moments that match coefficients from the following auxiliary regression of prices on project

complexity and capital type for each contract in the US market where project characteristics are

observed:

pricei = β0,y +β1complexityi +β2 · (max drilling depth)i · complexityi + εi (9)

where βy,0 is a capital-specific fixed effect. Equation (9) captures the relationship between

prices and contract characteristics through the match value in the Nash Bargaining solution.

Intuitively — for a given match and after adjusting for the outside options of the parties — a

higher price corresponds to a higher match value. I match three coefficients from this regression:

βlow,0,β1,β2. Second, I include the average price for each capital type (3 moments). Intuitively,

the average price moments identify m0,y. Fitting the remaining three moments from the auxiliary

regression identifies the m1,y parameters that govern complementarities between capital type and

project type.

Once the match value parameters are pinned down, the parameters that characterize the

distribution of potential projects (µl,σl) are identified from observed matches. Intuitively, the

entry condition and the matching simulation generate a mapping between the distribution of

potential projects in a location and the distribution of observed matches. In practice, I use the

following moments to identify (µl,σl). For the US market, these parameters are identified

by moments related to the average well-complexity match for each capital type (3 moments).

These moments also ensure that the model matches the sorting patterns between capital and

projects.

For the non-US market these parameters are identified by matching the average prices for low

and high capital types (2 moments per market). Finally, the Poisson parameter for new project

entry λl is determined by the average capital utilization in each market (1 moment per market);

higher values of λl correspond to higher capital utilization.
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Computation I provide information about how I compute the demand-side equilibrium in

Appendix D.2. Using this algorithm, I first compute the equilibrium in the US which returns

demand in the US market and the match-value function. Using this match-value function, I next

estimate demand in each remaining location. To fit the parameters I use the standard GMM

criterion function with the weight matrix as the identity matrix, except for the average well-

complexity match moments which I weight by 0.1 to ensure they are of the same scale as the

other moments.

6 Results

Supply side parameters Table 4 presents the estimated parameters from both the supply side

and the demand side. Values for costs, match value parameters, and the other parameters, are

given in millions of dollars per day. The values for the preference shock σε and the stay put

benefit bstay in Table 4(c) are both relatively low. For example, scaling up the σε to a per-month

value (i.e. the value per period in the model) is $3.3 million; the total price paid to a rig on

average per match (with a six-month contract) is $59.9 million.

The ‘unexploited oil reserves’ instrument used in the second substep to estimate γ is a strong

instrument, with a first-stage F-statistic of 94. In Table 4(a) I report the average cost over all

rig types within a location; I report costs also broken out by rig type and location in Online

Appendix Table A-2. Overall the estimates reveal heterogeneity in rig operational costs across

regions. For example, Europe has some of the highest drilling costs globally, consistent with

this region having higher employment standards and salary requirements for workers which is

a major component of rig owner operational expenses.

Demand side and match value parameters The fit of the model to the targeted moments

is detailed in Appendix Table A-1; since the model is exactly identified the model closely fits

the empirical moments. I also perform a model validation exercise centered around predicting

the average prices of mid-specification rigs in each location. These moments are not used in

estimation (with the exception of the US market). I plot the fit to these untargeted moments

in Appendix Figure A-4. The model also closely fits the untargeted moments with a median
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Table 4: Estimation results

(a) Location-specific Parameters

Costs (av. over y) # Entry Mean Std. dev

cl,y = γ p̄l,y λl µl σl

Africa 0.17† 6.58 0.59 1.07

(0.0015) (0.40) (0.27) (0.22)

Asia 0.14† 5.75 0.52 0.83

(0.0013) (0.41) (0.29) (0.21)

Australia 0.16† 3.31 0.59 0.92

(0.0015) (0.44) (0.27 (0.24)

Central Am. 0.17† 3.44 0.76 0.96

(0.0016) (0.46) (0.17) (0.23)

Europe 0.18† 14.16 0.56 1.02

(0.0017) (1.62) (0.22) (0.26)

Mid East 0.15† 2.83 0.55 0.82

(0.0014) (0.59) (0.50) (0.32)

South Am. 0.12† 11.81 0.44 0.77

(0.0011) (0.95) (0.15) (0.15)

US 0.16† 6.29 0.66 0.87

(0.0014) (0.57) (0.09) (0.07)

(b) Match value parameters (c) Other parameters

m0,y m1,y

Low-spec 0.660 -0.377 Scale parameter (γ) 0.570

(0.057) (0.050) (0.004)

Mid-spec 0.457 -0.0287 Preference shock (σε ) 0.11

(0.058) (0.024) (0.02)

High-spec 0.376 0.018 Stay put benefit (bstay) 0.10

(0.063) (0.020) (0.03)

Note: Standard errors in brackets computed using 200 bootstrap replications. The † symbol on the cost estimates

indicates that reported here is the average of the costs over the rig types in each location. The full cost matrix —

which is used in the counterfactuals — is reported in the Online Appendix.
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difference of only 2.5 percent.

The demand parameter results are in the second, third, and fourth columns of Table 4(a). The

estimates reveal substantial differences in demand across the world. For example, the mean

project complexity terms µl are consistent with the utilization of different types of capital

in different fields. For instance, Europe is a primary markets for low-specification rigs, and

contains simpler projects. By contrast, the US is a primary market for high-specification rigs

and contains complex projects that involve drilling deep and high-pressure wells.

Next, consider the match value results for m0,y and m1,y in Table 4(b). Theoretically, these

estimates must satisfy increasing differences to generate the empirical positive sorting patterns

between capital efficiency and project complexity. The empirical estimates satisfy this

increasing differences requirement. Beyond increasing differences, however, the exact sign and

ordering of the coefficients in theoretically ambiguous since the match value represents both

costs and benefits of drilling different well complexities. For example, for the match value

slope parameter m1,y, this may be negative for some rig types (e.g. complex projects incur more

costs to the well owners - such as drilling delays or the need to replace a damaged part of the

well - and this may differ with rig type), or it may be positive (more complex projects tend to

produce more oil). Overall, the match value estimates indicate that low-specification rigs have

an advantage in drilling simple projects. Conversely, high-specification rigs have an advantage

in drilling more complex wells.

7 Counterfactuals

I investigate counterfactual scenarios that centre around a moratorium on drilling complex wells.

This policy corresponds to real-world potential regulations in the industry. For example, it

reflects the practical effects of a ban on new drilling permits or new leases, as has been proposed

but not fully implemented by the Biden Administration: Friedman (2023). Specifically, over

time the industry has expanded into deeper waters (which are more complex to drill, involving

higher pressure formations and greater depths), and so new permits and lease sales tend towards
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these kinds of wells.29 As well, drilling bans in the industry like the 2010 US moratorium

primarily targeted complex wells (e.g. while a ban on drilling shallow water/simpler wells was

lifted after a few days, the broader moratorium lasted for months) .

I evaluate the efficiency of this policy if it were implemented using incomplete versus more

complete regulation. I begin with US-only regulation, motivated by the fact that many proposed

policies for the domestic US industry are not developed cooperatively with other regions. I also

consider a global agreement, as well as coordination regulation through a coalition of ‘richer

countries’ (incorporating the US, Europe, Australia, and South America). These parties to a

regional agreement align approximately with what is known as the ‘regulated areas’ of the

global oil and gas industry (see e.g. Holand (2017) who uses this terminology).

The counterfactual results are reported in terms of percentage changes. The benefit (discussed

further in Appendix A) is that converting from deepwater market production to emissions

essentially involves scaling by a multiplicative factor. Percentage changes are scale-free and

therefore robust to the choice of this multiplicative factor.

Computation Unlike in estimation, where I was able to leverage empirical objects like the

probability of matching and prices to simplify the computation, in the counterfactuals I need to

re-solve for the entire equilibrium. I provide the algorithm in Appendix D.3.

7.1 Discussion: Ban on complex wells

I implement the ban on drilling complex wells by eliminating wells with a complexity index

greater than 4.0, which is around the upper third of well complexity globally. The results are in

Figure 5.

US-only ban I first consider the effect of a ban on complex wells only in the US market. The

results in Figure 5(a) show that the regulations decrease carbon dioxide emissions by reducing

oil production in the US by -36.7% but also reduce profits by -17.2%.

29Recall that in order to drill a well, a tract on the ocean floor needs to be leased from the government and then a
permit to drill needs to be granted. This system is typically used throughout the world. A lease and permit grant
an oil and gas company the option to drill a well. Gramling and Freudenburg (2012) provide a summary of the
evolution of the industry in the US.
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Figure 5: Counterfactual: complex well ban

(a) Overall results

Counterfactual Leakage Total change Total change from
(per unit) (percent) reallocation (percent)

Re-sorting within Spatial Regulated Global Full model No het.
regulated locations locations

US-only ban
CO2 0.16 0.19 -36.7 -3.6 -34.8 -70.5

Profits 0.37 0.08 -17.2 -1.7 -44.5 -70.5

Coalition ban
CO2 -0.02 0.18 -36.2 -18.3 -15.5 -14.5

Profits 0.03 0.17 -16.0 -8.7 -20.3 -14.5

Global ban
CO2 0.11 0.00 -33.8 -33.8 -10.8 -30.6

Profits 0.23 0.00 -13.6 -13.6 -23.5 -30.6
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(b) US-only ban: statistics

low
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Note: Part (a): Leakage is defined as the increase in emissions (or profits) generated through unregulated economic
activity, for a one unit decrease in emissions (or profits) in the regulated activity. I decompose this into: (i) leakage
due to capital reallocation from re-sorting within regulated locations, where I define the “regulated market” as
complex wells in the US market, and the unregulated market as all other wells in the US market; (ii) leakage
from the movements of capital to other locations, where I define the “regulated market” as the US market and
the "unregulated market" as all other locations. The column ‘∆ Total from reallocation’ is the total decrease in
effectiveness compared to a ‘no reallocation benchmark’ where sorting patterns and rig locations are fixed. Part
(b): Summarizes heterogeneous effects of two key components that underlie the results: (i) the change number
of matches for each rig type (ii) for each match the average carbon dioxide emitted when the resulting oil and
gas is burned (which can change as rigs sort to other wells). Appendix A-5 has detail on this figure for the other
counterfactuals.
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If a policymaker looked at the effects of the regulation on the US market in isolation (as is

typically the case when doing cost/benefit analyses in this industry for the offshore oil and gas

leasing program and other regulation e.g. BOEM (2016)) and did not allow for the possibility

of capital reallocation, they might conclude that the regulation is effective in reducing pollution,

albeit expensive. However, looking at the total effect reveals that the regulation is -34.8 percent

less effective — as measured by the reduction in total emissions — due to capital reallocation.

The leakage analysis in Figure 5(a) shows where this inefficiency is coming from. Re-sorting

of rigs to other matches within the US implies that for every unit of carbon dioxide saved due to

the regulation, 0.16 units are generated through increased drilling of other well types. Leakage

across space is also important: for every unit of carbon dioxide saved by decreasing production

in the US, 0.19 units are produced elsewhere.

Moreover, because the regulation spurs movement of rigs to other locations to which they are

worse matched, or causes rigs to re-sort to wells where there are less complementarities, the

regulation generates capital misallocation. The total effect is illustrated in the change in profit

numbers in Figure 5(a).

Figure 5(b) illustrates some key statistics that underlie the results. While high-specification

rigs are matched with a lower probability due to the ban, because many of these rigs exit,

the remaining mid-specification rigs actually have a higher number of matches due to within-

location reallocation. Low-specification rigs occasionally drill more complex wells and the net

effect here is that they have a lower probability of matching.

This reallocation affects the sorting patterns, which affects which kinds of wells are drilled,

which then affects carbon emissions. As illustrated by the results in the carbon dioxide

per match in Figure 5(b), a ban on complex wells causes high and mid-specification rigs to

reallocate towards simpler wells. Although the rigs are less well-matched here, there is an

environmental benefit: these wells tend to produce less oil and therefore less emissions once

the oil is burned.
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Note that in this counterfactual no rigs choose to exit from the global market. In part, this is due

to the fact that capital is able to reallocate to other wells and regions not under regulation, which

moderates the effect on the change in Ul,y for each rig type. Indeed, I find that no rigs would

exit in any of the counterfactuals, (and this would persist even if the scrap value parameter was

doubled). Nevertheless, it is still important to include this extensive margin in the model, as

well as the extensive margin for wells. This is because if rigs did exit, but the channel was not

included, then the model would tend to overpredict leakage.

Global ban I also consider how a global agreement would affect the market. Since regulation

is now uniform, there are no unregulated locations. However, there are still well types which are

not banned within each location. As a consequence, although there is no leakage across space,

shutting down this channel exacerbates leakage within-location to 0.11 tons of carbon dioxide

produced elsewhere for every ton saved directly from the ban.

Globally, the change in emissions is -33.8 percent. This is mainly coming from more locations

under regulation. Reallocation still lowers the efficacy of the regulation by -10.8 percent.

Coalition ban Although a global ban does reduce leakage, it may not be politically feasible.

Therefore, I also consider a more pragmatic agreement involving a coalition of rich countries. A

coalition ban would be substantially more effective than a US-only ban, with capital reallocation

undercutting the efficacy of the regulation in terms of total global emissions by -15.5 percent

(which is similar to the number in the global agreement counterfactual). Spatial leakage is

still relatively high at 0.19: although more regions are under regulation, the coalition does not

encompass all locations with complex wells.

Within-location leakage in terms of emission is slightly negative — implying that the indirect

effect of the ban is to reduce emissions further — and this results from the interaction of

a number of mechanisms. Concretely, when high-specification rigs leave the regulated area

(which happens disproportionally with a complex-well ban), they generate a lower probability

of matching for complex wells just below the cutoff of the ban. This then causes these wells to

enter with a lower probability. As a result, the remaining rigs in the location match with wells
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that produce less oil and resulting emissions.

7.2 Discussion: Role of two-sided vertical heterogeneity

In theory, incorporating two-sided vertical heterogeneity could amplify or diminish the effects

of leakage. It could amplify the effects if the regulation causes high-specification rigs to

disproportionally exit for other locations. This is because the entry of these rigs into other

locations would reduce capacity constraints on the most complex wells, which also tend to

produce more oil and gas. On the other hand, incorporating two-sided vertical heterogeneity

makes rigs and wells less substitutable, which would tend to reduce leakage from reallocation.

To quantify the empirical relevance of these channels, in the final column of Figure 5(a) I

present the results of the model if two-sided vertical heterogeneity was eliminated and all rigs

and all wells were the same. In this exercise, for simplicity, I also set location-specific costs

to their average, so locations are differentiated only by the number of potential well draws Dl .

(One side-effect of this simpler version of the model is that the percentage changes in CO2 and

profits are the same because the total effects are driven solely by the number of homogeneous

matches in each location.)

Comparing the results in the final column of Figure 5(a) to the full model, the ‘homogeneous

agents’ model would vastly over-predict leakage in the US-only and global ban counterfactuals.

For example, in the US-only counterfactual, reallocation would be predicted to undercut

the change in emissions by -70.5 percent, around double the value in the full model. These

results are consistent with the simpler model failing to capture the imperfect rig and well

substitutability (and the resulting effects on rig location choice) of the full model. However,

capturing heterogeneous rig relocations — which can amplify leakage — is important too. This

is apparent in the coalition ban counterfactual, where the two theoretical effects approximately

cancel each other out and leakage would be slightly under-predicted by the ‘homogeneous

agents’ model.
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8 Conclusion

Supply-side climate policies in the global oil and gas industry are increasingly being proposed

and implemented throughout the world. Since these policies are usually incomplete, a key

question is whether leakage might undermine their efficiency. In this paper I quantify the

role of leakage via capital reallocation and the potential gains to a global agreement. To do

so I develop a framework that extends the literature on spatial matching models in industrial

organization to incorporate two-sided vertical heterogeneity of firms leading to sorting. I apply

the framework to a previously unexplored dataset of contracts and relocation decisions in the

market for offshore deepwater drilling rigs.

I find that supply-side climate policies, when implemented through US-only incomplete

regulation, induce substantial responses through capital reallocation. This reallocation

undercuts the environmental benefits of regulation, causing oil to be produced elsewhere in the

world while inducing spatial misallocation. A global ban would be more effective, as would

be a more politically feasible coalition of rich countries implementing coordinated regulation.

Overall, the results illustrate that capital reallocation is an important channel for leakage

and should be a central consideration in the design of supply-side policies in the oil and gas

industry.
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