
Online Appendix

A Model for emissions

I require a model that maps changes in the number and type (i.e. the complexity) of the

wells in each location into changes in global carbon dioxide emissions. I do this in three

steps:

1. Map matches into oil and gas production in the deepwater market.

2. Map changes in oil and gas production in the deepwater market into changes

in global production and consumption globally, which involves accounting for

equilibrium effects.

3. Map changes in global oil and gas consumption into changes in global carbon dioxide

emissions.

Note that, as I set out in more detail below, step 2 and step 3 reduce down to multiplying

changes in oil and gas production in the deepwater market by a scale factor which is

calibrated based on the best-available empirical estimates. I evaluate the counterfactuals

in the paper mainly by either the percent changes in emissions, or leakage statistics that

are the change in emissions generated in the unregulated markets divided by the change

in emissions generated in the regulated market. These metrics are scale-free measures,

and so do not rely on specific assumptions for the scale factors applied in steps 2 and 3.

1. Map matches into oil and gas production in the deepwater market

For the first model, I run the regression:

oil productioni = β0 +β1well complexityi+ ϵi (A-1)

which exploits the strong relationship between complex wells and increased oil production.

In order to measure oil production, I take the average number of barrels produced per day
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Figure A-1: Relationship between oil production and well complexity
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Note: Shaded area is the 95% confidence interval.

for the first 10 years of production. The results from this regression are β0 =358.1(751.5)

and β1 =1666.0(276.6) (standard errors in brackets) and the sample size is for 143 wells

where there is both production and well complexity data. I plot a local polynomial

regression of this relationship in Figure A-1.

2. Map changes in oil and gas production in the deepwater market into changes

in global production and consumption globally

In this step I follow Ahlvik et al. (2022). Assume that the supply and demand curves

in the world market are well-approximated (locally) by constant elasticity of supply and

demand curves. Then, a partial equilibrium change of an extra barrel produced in the

deepwater market will result in a total equilibrium change to the equilibrium barrels

produced and consumed worldwide of −eD/(−eD + eS). Here, eD and eS denote global

demand and supply elasticities. Consistent with Ahlvik et al. (2022) I use a value of

eS = 1.96 as the long-term supply elasticity. Furthermore, as detailed in Ahlvik et al.

(2022), demand elasticities from eD = −0.2 to eD = −0.5 are used in the literature. As
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previously discussed, since the main estimates that I report in the counterfactuals are

scale-free measures (such as percentage changes in emissions), these results are robust to

assumptions on eD and eS . Therefore, for simplicity, I compute the total change using

the midpoint demand elasticity of eD = −0.35.

3. Map changes in global oil and gas consumption into changes in global

carbon dioxide emissions.

In this step I convert this global change in output to carbon emissions by scaling by the

EPA’s Greenhouse Gases Equivalencies Calculator. This factor is 0.43 metric tons carbon

dioxide/barrel oil.1

B Data construction

I use several datasets for the analysis:

• Rigzone data of rig status updates and contracts

• Permit, borehole, and production data, from the BSEE (Bureau of Safety and

Environmental Enforcement)

• CERDI dataset of bilateral distances between locations

I explain first how I clean the raw Rigzone data. I then explain how I perform a merge

between the BSEE data and the Rigzone data to get the data on contracts and details

of the projects under each contract in the US market. Finally, I explain how I construct

key metrics from the cleaned data like rig utilization.

B.1 Cleaning the Rigzone data

As mentioned in the data section (Section 2.1), offshore drilling can be split into two

broad categories. The first category is shallow-water drilling which is undertaken in

water depths of less than 500ft using ‘jackup’ rigs which extend their legs to the seabed.

1The calculator is here: https://www.epa.gov/energy/greenhouse-gases-equivalencies-calcula
tor-calculations-and-references
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The second category is deepwater drilling with is undertaken in water depths of more

than 500ft using ‘floater’ rigs (drillships and semi-submersibles) which anchor themselves

to the seabed. These two categories of drilling are treated by practitioners as essentially

separate markets. This is due to, for example, the differences in rig technology, and the

fact that the oil and gas wells drilled by rigs in the deepwater are typically much more

complex, costly, and productive, than wells in shallow water. In this paper I cut the data

just to the deepwater market for the years 2005-2016 where the number of contracts per

year appears to be relatively stable.

Although most rigs operate under relatively short-run contracts, a small number of rigs

operate under extremely long-run contracts for a single oil company (e.g. a 10 year

contract). I delete rigs that operate under contracts that are longer than 2 years, treating

these very long-run contracts as essentially a different type of market than those deepwater

rigs which perform short-run work. Specifically, I delete 236 contracts that are longer than

2 years, comprising 11.2% of the total number of contracts (and reducing the total number

of contracts from 2109 to 1873).

B.2 Merging the Rigzone data with the BSEE data

Critical to my estimation strategy is data that links rig and well characteristics to

contract prices (and other contract details). In the US market I have data on both well

characteristics (from the BSEE) and contract details (from Rigzone). In this section I

describe how I merge these two datasets.

I begin with a dataset of 375 contracts for the US market, and 781 wells. I successfully

match 478 wells with contracts, and collapse these contracts to 183 contracts (many

contracts contain multiple wells and for these cases I use the average complexity of the

matched wells). Why are some wells and contracts not matched? Sometimes the rig name

is recorded differently between the well dataset and the contract dataset, for example the

rig’s name might change and the current name may be used in the contract dataset,

whereas the original name is used in the well dataset. I try to connect as many rig

and well names as possible by including previous rig names and accounting for simple
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typographical differences between the names in the datasets.

Finally, I delete contracts which may have been affected by the moratorium, resulting in

a final dataset of 143 contracts. I use these contracts for the auxiliary regression in the

model estimation. Note that for the graphs in Figure (4) I use the ‘uncollapsed’ sample of

478 wells. Also note that for many metrics such as average prices, utilization etc, I do not

require the matched contracts and so where possible I use the full sample of contracts.

B.3 Constructing metrics

In this subsection I describe how I construct metrics that I use in the estimation from the

cleaned Rigzone data.

B.3.1 Rig relocations

I construct rig relocations simply by looking at changes in rig statuses (for example, a

rig is in one region in one status and then in the next status it is in a different region).

Typically, these relocations are that the rig is drilling in one region and then moves to drill

in a different region. However, there are some exceptions to this. Notably, I include several

movements from a shipyard (e.g. the rig is ‘Under Construction’ in Asia) to a different

region (e.g. the rig is then ‘Drilling’ in USA) as a relocation. My justification for including

this as a relocation choice is that these rigs could have alternatively just remained and

drilled in the field in the region in which they were constructed (my definition of a region is

large enough that it is always a possibility that this could occur) or potentially could have

chosen to move after construction to a different location. Therefore, I assume that these

relocations contain useful information about the relative costs and benefits of drilling in

different locations and so include them in the relocation data.

B.3.2 Rig utilization

Rig utilization is defined as the average proportion of time that a rig is being used in a

given location. I begin by converting the statuses of every rig (which in the raw data look

like, for example, a rig is "Drilling" between a block of two dates at a given day-rate for

a particular oil and gas company in a particular location) into a daily dataset of activity
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at the individual rig level, for every day between 2005-2016. I then classify these daily

statuses into whether a rig is utilized or not. I consider a rig utilized if it is in the statuses

of "Drilling", "Workover", "Production", "Modification", "Inspection". I consider the total

number of rigs in a location (the denominator for utilization) as all these statuses except

if a rig is "Under Construction" or "Cold Stacked" (mothballed). The main status of rigs

not utilized in a location is that they are "Ready Stacked" (staffed and ready to drill with

little delay).

Note that to compute the moments in estimation, I delete the period of time when the

US drilling moratorium was active for the entire world market. This is because during

this period contracts were cancelled using ‘force majeure’ provisions after the moratorium;

outside of the moratorium I observe no other instances of cancelled contracts in the data.

B.3.3 Well complexity: the mechanical risk index

This section is written exactly as in Vreugdenhil (2023). In that paper this section

draws directly from Kaiser (2007). The Mechanical Risk Index was developed by Conoco

engineers in the 1980s (Kaiser (2007)). The idea behind the index is to collapse the many

dimensions that a well can differ on into a one-dimensional ranking of well complexity.

Well complexity is directly related to the cost of drilling a well: these wells run an increased

risk of technical issues which may require new materials or result in blowouts.

The Mechanical Risk Index is computed by first computing ‘component factors’:

ϕ1 =
Å
TD+WD

1000

ã2

ϕ2 =
Å
V D

1000

ã2ÅTD+HD

VD

ã
ϕ3 = (MW )2

Å
WD+V D

V D

ã
ϕ4 = ϕ1

 
NS+ MW

(NS)2

Here TD is total depth in feet, WD is water depth in feet, VD is vertical depth in feet,
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MW is mud weight in ppg, NS is the number of strings.

Next ‘key drilling factors’ are computed. These are: ψ1 = 3 if there is a horizontal sections;

ψ2 = 3 if there is a J-curve; ψ3 = 2 if there is an S-curve; ψ4 if there is a subsea well; ψ5 = 1

if there is an H2S/CO2 environment; ψ6 = 1 if there is a hydrate environment; ψ7 = 1

if there is a depleted sand section; ψ8 = 1 if there is a salt section; ψ9 = 1 if there is a

slimhole, ψ10 = 1 if there is a mudline suspension system installed; ψ11 = 1 if there is

coring; ψ12 = 1 if there is shallow water flow potential; ψ13 = 1 if there is riserless mud to

drill shallow water flows; ψ14 = 1 if there is a loop current.

The Mechanical Risk Index is then computed as:

MRI =
Å

1+
∑
j ψj

10

ã∑
i

ψi

In my data I have excellent information for all wells on TD,WD,V D,HD using the BSEE

permit data and the BSEE borehole data. I have data for MW,NS for a subset of wells

and I impute the remainder based on geological proximity (whether they are in the same

‘field’) - based on the fact that geological conditions are usually similar for nearby wells.

Computing the ‘key drilling factors’ ψj presents a greater challenge because the data are

either not recorded (e.g. if there is shallow water flow potential) or would need to be

imputed from well velocity surveys (e.g. if there is an S-curve). Rather than guess I set

all ψj = 0. The implication for the index is that there will be a less accurate measure of

complexity which will result in measurement error.

C Algorithms
C.1 Algorithm for computing the supply-side equilibrium

I compute the parameters δl,y,σϵ, bstay using maximum likelihood. I compute the

likelihood function for each guess of the parameters as follows. Denote the k-th iteration

of the value functions for a searching rig and an unemployed rig, respectively, by V k
l,y,U

k
l,y.

Then, I compute the likelihood using predicted choice probabilities using the following
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algorithm:

1. Guess initial value functions at iteration k = 0: V 0
l,y,U

0
l,y.

2. Using Equation (5), update the value of searching in each location l, for each type

of rig y, V k+1
l,y . Use the empirical probabilities of matching in each location as the

qcapitall,y .

3. Using Equation (4), update the value of unemployment in each location l, for each

type of rig y, Uk+1
l,y .

4. Repeat from Step 2. until the value functions converge.

5. Compute predicted choice probabilities for moving from location l to l′ for a rig of

type y, using Vl,y and Equations (A-2) and (A-3). These choice probabilities are:

Pl,l′,y =
exp
Å(

− cddl,l′ +βVl′,y

)
/σϵ

ã
exp
Å(
bstay +βVl,y

)
/σϵ

ã
+ ∑

l′ ̸=l exp
Å(

− cddl,l′ +βVl′,y

)
/σϵ

ã (A-2)

Pl,l,y =
exp
Å(
bstay +βVl,y

)
/σϵ

ã
exp
Å(
bstay +βVl,y

)
/σϵ

ã
+ ∑

l′ ̸=l exp
Å(

− cddl,l′ +βVl′,y

)
/σϵ

ã (A-3)

6. Compute the likelihood:

L=
∑
y

∑
l

∑
l′
logP

nl,l′,y
l,l′,y (A-4)

Here, the value nl,l′,y is the number of observations (i.e. months) that I observe a

type-y rig move from location l to location l′.
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C.2 Algorithm for computing the demand-side equilibrium

C.2.1 Overview

In the second step of the estimation I use the simulated method of moments to compute

the parameters underlying the demand-side of the model. Here I set out the algorithm to

compute the demand-side equilibrium that I recompute at every iteration of the objective

function.

Note that rig costs are known from the first step of the estimation. I also know the

empirical total number of rigs in each location nl,y. Given these objects, and candidate

match value parameters and the demand parameters, I compute an equilibrium as a fixed

point in the probability a project matches with each capital type {qprojectl,y }y∈{low,mid,high}.

Note that the demand-side equilibrium computation is separable over each location (since I

fix the equilibrium number of rigs nl,y in each location). Therefore, the following algorithm

centers on how to compute the equilibrium in one location. I set out the algorithm here,

and then provide more details on the matching simulation below.

C.2.2 Demand-side algorithm

1. Guess the matching probability {qproject,kl,y }y∈{low,mid,high} where k denotes the

iteration and k = 0 denotes the initial guess.

2. Since rig costs are known, and for a candidate vector of demand-side parameters and

the qproject,kl,y , I can compute prices using the Nash Bargaining solution. Therefore, I

can compute the value of a project of type x targeting a rig of type y using Equation

(1): Πproject
l,x,y .

3. Update the probability of a project matching in the type-y rig submarket to iteration

k+1, {qproject,k+1
l,y }y∈{low,mid,high}, using a matching simulation (detailed below).

4. Iterate from Step 2 until convergence.

A-9



C.2.3 Matching simulation

The matching process outlined in the paper fits into a queuing framework for each rig y

submarket. As mentioned in the main text, this queue is defined in Kendall’s notation by

M/τ/nl,y/(nl,ytbacklog/τ)/FIFO. That is, the queue has a Poisson arrival rate, service

time at the contract duration τ , nl,y ‘servers’, nl,ytbacklog/τ places in the queue, and a

queuing discipline of first-in-first-out.

Denote the iteration of the queue by h, where an ’iteration’ can be though of as a snapshot

of the queue in a particular time period (a month) and an update to h+ 1 of the queue

can be though of as the transition of the queue to the next time period. I simulate the

queue for each rig type y submarket, in each location l, in the following way:

1. Initialize the backlog of each of the nl,y rigs at 0. Therefore the state of the queue

is a nl,y-length vector where each element is the backlog of a particular rig. Denote

each element (for the i-th rig) by bi,hl,y .

2. Denote the realization of the number of wells in iteration h who enter by dhl .

Compute this dhl by taking a draw from Poisson(λl).

3. Take dhl draws from the project complexity distribution fentryl,x . Denote the type of

each of these draws by xj,hl .

4. For each complexity draw xj,hl , compute the payoff to matching with each particular

type of rig using Equation (1). (Note here that the ϵy draws in Equation (1) are

project j and rig type y specific.)

5. For each j, find the rig type y where the payoff to matching is maximized. Denote

the total number of wells that target rig type y by dhl,y. Then, compute matches:

• If the number of wells dhl,y is less than or equal to the total number of available

rigs, then all wells will match with a rig. Therefore, add the contract length τ

to the backlogs of dhl,y available rigs. Note that in this iteration of the queue

the probability of a well matching will be equal to 1.
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• If the number of wells dhl,y is greater than the number of available rigs, then

not all of the wells will match. In this case, allocate wells to available rigs in

the order of entry until the backlogs are completely full (i.e. adding one more

match with contract length τ would cause the backlog of a rig to be greater

than the critical value tbacklog). Note that in this iteration of the queue the

probability of a well matching will be less than 1.

6. Update the queue to the next period h+ 1 by removing 1 month of each rig i with

a backlog > 1 (backlogs cannot be negative so if the current backlog is 0, there will

be no change in bi,hl,y ).

7. Repeat from Step 2.

In practice, I start by ‘burning-in’ the matching simulation to remove dependence on the

initial guess. I then iterate over h in the above algorithm many times. From this, I

generate the long-run probability of a project matching in the type-y capital submarket

(qprojectl,y ), which is then used in the demand side algorithm. As a side-product, the

queuing algorithm also delivers qcapitall,y , rig utilization (the proportion of rigs with a

positive backlog), and the average match for each rig type, amongst other things. These

objects are useful for computing counterfactuals and moments in the demand estimation.

C.3 Algorithm for computing the counterfactuals

C.3.1 Overview

Overall, the algorithm for the counterfactuals involves recomputing the entire equilibrium

of the global market for deepwater rigs. Unlike in estimation, I can no longer leverage

empirical objects in the data like empirical probabilities of matching, because these will

change in the counterfactuals.

One implementation of a full solution algorithm would be to iterate over the full demand-

side equilibrium and the full supply-side equilibrium until convergence. While this would

work in theory, in the context of the model in this paper it would be very computationally
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demanding. The reason comes from computing the demand-side equilibrium: due to the

two-sided vertical heterogeneity, and the queuing model which needs to be computed via

simulation, the demand-side equilibrium is computationally slow.

Instead, I employ a slightly different algorithm. This algorithm still converges to the same

equilibrium as a full-solution algorithm. It also preserves the broad idea of sequentially

iterating over the demand-side and the supply-side of the model. However, I add in

an extra step where I perturb and approximate the demand-side equilibrium before

computing the supply-side equilibrium. In the algorithm this allows me to update —

for each outer loop iteration — the supply-side equilibrium (which is computationally

fast) multiple times for each single update of the full demand-side equilibrium (which is

computationally slow). To put it another way, in the algorithm, the supply-side therefore

is nudged faster towards to full-solution equilibrium, requiring less overall computations

of the demand-side equilibrium.

To build further intuition about how the algorithm fits together, note that the demand

side is separable across locations for a fixed number of rigs of each type in a location

l. Therefore, the equilibrium in each location l on the demand side can be computed in

parallel in each outer loop step. Furthermore, the supply side is separable across rig types

y given the rig’s probability of matching in each location and the average price of each rig

once matched. Therefore, the supply side can be computed in parallel across rig types.

C.3.2 Algorithm

1. Initialize the algorithm at iteration k = 0 with a guess of the number of rigs of type

y in each location l, denoted nk=0
l,y . Also guess the probability of a project matching

in each rig type y submarket in each location qproject,k=0
l,y .

2. For each location l, compute the demand side equilibrium at nk=0
l,y and also for

"perturbations" around nk=0
l,y :

• To compute the perturbations, I use the demand-side algorithm detailed above

in Section C.2.
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• These perturbations correspond to varying the number of rigs of a particular

type, holding the number of other rigs fixed and the qproject,kl,y fixed when

projects make their targeting choices. Since qproject,kl,y is fixed, this requires

computing steps 2. to 5. in the demand-side algorithm only once, and therefore

computing the matching simulation only once.

• For each perturbation, and for each rig type y, record the equilibrium price

and the probability of a rig matching.

3. Given these perturbations, update the supply side for each rig type y across locations

in the following way.2 Note that the following is an inner loop which iterates over

the distribution of rigs in each location, and I denote the iteration of this inner loop

by h.

(a) Initialize the inner loop at h = 0 using the current distribution of rigs across

space nh=0
l,y .

(b) Using linear interpolation over the perturbations computed in Step 2., get the

expected price in each location, as well as the probability of matching for rigs.

(c) Using these prices and the probabilities of matching, get the rig value functions

Uhl,y, V h
l,y and the corresponding conditional choice probabilities using the

supply side algorithm in Section C.1.

(d) Using the conditional choice probabilities, construct a transition probability

matrix (i.e. a matrix where each row is the probability that a type y rig in

location l will move to an alternative location l′).

(e) Update the number of rigs in each location once to produce a new distribution

of rigs across locations nh+1
l,y .

(f) Repeat from sub-step 3(b) until convergence of the distribution of rigs of type

y across locations.

2So, I run the following steps for each y ∈ {low,mid,high}
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4. Given the new supply-side equilibrium, update the demand side equilibrium using

the demand-side algorithm detailed above in Section C.2.

5. Repeat from step 2. until convergence in the distribution of rigs across space in the

outer loop.

D Identification: details
D.1 Supply side: Substep 1.1

Here I provide more formal details about how the markup parameters δl,y as well as the

shocks σϵ and the value of staying in a location bstay are identified using the location

choice data alone.

Suppose that there are n ≥ 3 locations and focus on identifying the parameters for a

particular rig type y. There are n+ 2 distinct parameters to identify: one markup

parameter for each of the n locations as well as bstay and σϵ. In each location there

are n choice probabilities (the rig can choose to stay or move to one of the n−1 different

locations), and n− 1 degrees of freedom since these probabilities must sum to 1. This

leads to n(n− 1) degrees of freedom in total. So long as the number of locations n ≥ 3

then n(n−1) ≥ (n+2) and the parameters are identified.

E Equilibrium with two-sided heterogeneity

A key difference between the model in this paper and past work which studies markets

where agents are relatively homogeneous (such as bulk shipping in Brancaccio et al.

(2020)) is that I allow for two-sided vertical heterogeneity. Although this feature is

important to understanding capital relocation in the offshore oil and gas industry, it adds

substantial complexity to the equilibrium. In particular — with two-sided heterogeneity

in the model — the entry of different types of rigs within a location will change relative

prices and relative capacity constraints. As a result, potential projects may change

their targeting behavior, thereby causing a reallocation of matches. This within-location

equilibrium then affects capital location choices since it determines equilibrium prices

and utilization. To highlight intuitively how two-sided heterogeneity shapes the within-
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Figure A-2: Within-location equilibrium: effects of high-type capital entry

0 2 4 6
Project complexity (x)

0.0

0.2

0.4

0.6

(a) P(target low-type | x)

baseline
add high-type supply

0 2 4 6
Project complexity (x)

0.25

0.30

0.35

0.40

(b) P(target mid-type | x)

baseline
add high-type supply

0 2 4 6
Project complexity (x)

0.2

0.4

0.6

(c) P(target high-type | x)

baseline
add high-type supply

Note: This figure is a comparative statics exercise that shows the effect of a increase in high-type capital
on the equilibrium targeting behavior of potential projects within a location. Recall that each potential
project chooses — given prices and the probability of matching each type of capital qproject

l,y — which type
of capital to target using a logit model. This figure illustrates this targeting behavior: conditional on an
project complexity type (x) on the x-axis, the y-axis shows the probability that it targets a particular
type of capital. (So, for each x, these graphs can be summed vertically so that 1 = P (target low-type |x)+
P (target mid-type |x)+P (target high-type |x).) The main point this figure highlights (discussed further
in the text) is that high-type capital entry affects the targeting behavior of potential projects by changing
equilibrium prices and relaxing capacity constraints. In equilibrium this reallocates matches from existing
mid and low-type capital to high-type capital, and also affects sorting behavior within the location.

location equilibrium I perform a comparative statics exercise in Figure A-2.

Figure A-2 shows the probability that each type of potential project (on the x-axis) targets

a particular type of capital within a location. In the baseline (shown by the solid dark-

blue line) simple projects tend to target low-type capital, average complexity projects

target mid-type capital, and complex projects target high-type capital. Next I consider

the effects after an increase in high-type capital, shown by the dashed light-blue line.

Initially, the entry of high-type capital relaxes the high-type capacity constraints and

lowers high-type prices. This causes projects to redirect their targeting towards high-type

capital and away from mid-type and low-type capital, resulting in an upwards shift of the

dashed light-blue line. This then relaxes the mid-type capacity constraint and lowers the
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mid-type price, which causes a further equilibrium shift in project targeting behavior away

from low-type capital and towards mid-type capital. Notably, simple projects are more

likely to target mid-type capital after high-type entry. Overall, the entry of high-type

capital reduces prices and relaxes capacity constraints for all capital types, and causes all

types of capital to be reallocated towards relatively simpler types of projects.

F Additional tables and figures
Table A-1: Fit of the moments: simulated vs data

Simulated Data Simulated Data

US Australia
Av. Price: Low 0.23 0.23 Av. Price: Low 0.27 0.27
Av. Price: High 0.40 0.40 Av. Price: High 0.47 0.46
Utilization 0.83 0.85 Utilization 0.91 0.93
Av. complexity: Low 1.20 1.18 Central Americas
Av. complexity: Mid 2.75 2.74 Av. Price: Low 0.23 0.23
Av. complexity: High 3.69 3.70 Av. Price: High 0.52 0.53
β0,low 0.29 0.27 Utilization 0.90 0.90
β1 -0.06 -0.04 Europe
β2 0.07 0.05 Av. Price: Low 0.31 0.31
Africa Av. Price: High 0.48 0.48
Av. Price: Low 0.30 0.29 Utilization 0.91 0.91
Av. Price: High 0.46 0.47 Mediterranean
Utilization 0.85 0.86 Av. Price: Low 0.23 0.22
Asia Av. Price: High 0.44 0.42
Av. Price: Low 0.23 0.22 Utilization 0.88 0.89
Av. Price: High 0.47 0.45 South America
Utilization 0.83 0.83 Av. Price: Low 0.22 0.19

Av. Price: High 0.43 0.43
Utilization 0.93 0.93

Note: This table shows the fit of the simulated moments vs the empirical moments in the data. The
simulated method of moments procedure is performed independently for each location starting with the
US market.
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Figure A-3: Fit to untargeted moments
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Note: This table shows the fit of the simulated untargeted moments vs the empirical untargeted moments
in the data. Each dot represents the average price for a mid-specification rig in a location (with the
exception of the US which is a targeted moment).

Figure A-4: Heterogeneous effects of regulation: detail
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Note: Gray bar: change for high-specification rig. Light-blue bar: change for mid-specification rig. Dark-
blue bar: change for low-specification rigs. Overall, this figure shows detail about the change in the
carbon emissions per match, and also the number of matches, for all the six counterfactuals. The top
row corresponds to the simple well ban counterfactuals and the bottom row corresponds to the complex
well ban counterfactuals.
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Table A-2: Estimation results: costs detail

Drilling cost (cl,y = γp̄l,y)
Low-type Mid-type High-type

cl,low cl,mid cl,high

Africa 0.155 0.188 0.250
(0.1528, 0.1577) (0.1844, 0.1903) (0.2461, 0.2540)

Asia 0.118 0.160 0.242
(0.1157, 0.1194) (0.1578, 0.1628) (0.2378, 0.2454)

Australia 0.147 0.166 0.245
(0.1443, 0.1489) (0.1630, 0.1682) (0.2404, 0.2481)

Central Am. 0.120 0.240 0.283
(0.1184, 0.1222) (0.2360, 0.2435) (0.2784, 0.2873)

Europe 0.168 0.211 0.255
(0.1647, 0.1699) (0.2078, 0.2145) (0.2506, 0.2587)

Mid. East 0.116 0.183 0.224
(0.1138, 0.1175) (0.1798, 0.1855) (0.2201, 0.2271)

South Am. 0.102 0.118 0.227
(0.1003, 0.1035) (0.1158, 0.1195) (0.2236, 0.2307)

US 0.121 0.164 0.215
(0.1190, 0.1228) (0.1616, 0.1667) (0.2110, 0.2177)

Note: Confidence intervals at 95% using 200 bootstrap replications in brackets.
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